Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Ewan
1
69 kgBuitrago
2
59 kgLaas
3
76 kgBagioli
4
60 kgCharmig
5
66 kgGaviria
6
71 kgVan Gils
7
63 kgDe Buyst
8
72 kgCosta
9
69 kgBonifazio
10
72 kgGroß
11
71 kgZingle
12
67 kgDehairs
13
82 kgOliveira
14
66 kgBallerini
15
71 kgBarthe
16
70 kgLecroq
17
70 kgConsonni
18
60 kgDeclercq
19
67 kg
1
69 kgBuitrago
2
59 kgLaas
3
76 kgBagioli
4
60 kgCharmig
5
66 kgGaviria
6
71 kgVan Gils
7
63 kgDe Buyst
8
72 kgCosta
9
69 kgBonifazio
10
72 kgGroß
11
71 kgZingle
12
67 kgDehairs
13
82 kgOliveira
14
66 kgBallerini
15
71 kgBarthe
16
70 kgLecroq
17
70 kgConsonni
18
60 kgDeclercq
19
67 kg
Weight (KG) →
Result →
82
59
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | EWAN Caleb | 69 |
2 | BUITRAGO Santiago | 59 |
3 | LAAS Martin | 76 |
4 | BAGIOLI Andrea | 60 |
5 | CHARMIG Anthon | 66 |
6 | GAVIRIA Fernando | 71 |
7 | VAN GILS Maxim | 63 |
8 | DE BUYST Jasper | 72 |
9 | COSTA Rui | 69 |
10 | BONIFAZIO Niccolò | 72 |
11 | GROß Felix | 71 |
12 | ZINGLE Axel | 67 |
13 | DEHAIRS Simon | 82 |
14 | OLIVEIRA Rui | 66 |
15 | BALLERINI Davide | 71 |
16 | BARTHE Cyril | 70 |
17 | LECROQ Jérémy | 70 |
18 | CONSONNI Simone | 60 |
19 | DECLERCQ Benjamin | 67 |