Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Ewan
1
69 kgBuitrago
2
59 kgGroenewegen
3
70 kgGaviria
4
71 kgMcLay
5
72 kgLaas
6
76 kgBagioli
7
60 kgDe Buyst
8
72 kgCharmig
9
66 kgVan Gils
10
63 kgvan Poppel
11
82 kgCosta
12
69 kgDainese
13
70 kgBonifazio
14
72 kgGroß
15
71 kgBallerini
16
71 kgZingle
17
67 kgBlikra
18
75 kgConsonni
19
60 kgOliveira
20
66 kgBarthe
21
70 kgLecroq
22
70 kgDeclercq
23
67 kg
1
69 kgBuitrago
2
59 kgGroenewegen
3
70 kgGaviria
4
71 kgMcLay
5
72 kgLaas
6
76 kgBagioli
7
60 kgDe Buyst
8
72 kgCharmig
9
66 kgVan Gils
10
63 kgvan Poppel
11
82 kgCosta
12
69 kgDainese
13
70 kgBonifazio
14
72 kgGroß
15
71 kgBallerini
16
71 kgZingle
17
67 kgBlikra
18
75 kgConsonni
19
60 kgOliveira
20
66 kgBarthe
21
70 kgLecroq
22
70 kgDeclercq
23
67 kg
Weight (KG) →
Result →
82
59
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | EWAN Caleb | 69 |
2 | BUITRAGO Santiago | 59 |
3 | GROENEWEGEN Dylan | 70 |
4 | GAVIRIA Fernando | 71 |
5 | MCLAY Daniel | 72 |
6 | LAAS Martin | 76 |
7 | BAGIOLI Andrea | 60 |
8 | DE BUYST Jasper | 72 |
9 | CHARMIG Anthon | 66 |
10 | VAN GILS Maxim | 63 |
11 | VAN POPPEL Danny | 82 |
12 | COSTA Rui | 69 |
13 | DAINESE Alberto | 70 |
14 | BONIFAZIO Niccolò | 72 |
15 | GROß Felix | 71 |
16 | BALLERINI Davide | 71 |
17 | ZINGLE Axel | 67 |
18 | BLIKRA Erlend | 75 |
19 | CONSONNI Simone | 60 |
20 | OLIVEIRA Rui | 66 |
21 | BARTHE Cyril | 70 |
22 | LECROQ Jérémy | 70 |
23 | DECLERCQ Benjamin | 67 |