Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Van Gils
1
63 kgBuitrago
2
59 kgCharmig
3
66 kgRenard
4
74 kgGrondin
5
77 kgMaciejuk
6
78 kgDainese
7
70 kgKonychev
9
76 kgMeeus
10
80 kgGroß
11
71 kgBallerstedt
12
76 kgMilan
13
87 kgPajur
14
72 kgZingle
15
67 kgNaberman
16
70 kgMohd Zariff
17
63 kgUrianstad Bugge
18
61 kgBlikra
19
75 kgBagioli
21
60 kgDrizners
22
70 kg
1
63 kgBuitrago
2
59 kgCharmig
3
66 kgRenard
4
74 kgGrondin
5
77 kgMaciejuk
6
78 kgDainese
7
70 kgKonychev
9
76 kgMeeus
10
80 kgGroß
11
71 kgBallerstedt
12
76 kgMilan
13
87 kgPajur
14
72 kgZingle
15
67 kgNaberman
16
70 kgMohd Zariff
17
63 kgUrianstad Bugge
18
61 kgBlikra
19
75 kgBagioli
21
60 kgDrizners
22
70 kg
Weight (KG) →
Result →
87
59
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | VAN GILS Maxim | 63 |
2 | BUITRAGO Santiago | 59 |
3 | CHARMIG Anthon | 66 |
4 | RENARD Alexis | 74 |
5 | GRONDIN Donavan | 77 |
6 | MACIEJUK Filip | 78 |
7 | DAINESE Alberto | 70 |
9 | KONYCHEV Alexander | 76 |
10 | MEEUS Jordi | 80 |
11 | GROß Felix | 71 |
12 | BALLERSTEDT Maurice | 76 |
13 | MILAN Jonathan | 87 |
14 | PAJUR Markus | 72 |
15 | ZINGLE Axel | 67 |
16 | NABERMAN Tim | 70 |
17 | MOHD ZARIFF Muhammad Nur Aiman | 63 |
18 | URIANSTAD BUGGE Martin | 61 |
19 | BLIKRA Erlend | 75 |
21 | BAGIOLI Andrea | 60 |
22 | DRIZNERS Jarrad | 70 |