Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Milan
1
87 kgGroenewegen
2
70 kgWærenskjold
3
92 kgBol
4
83 kgKanter
5
68 kgWalscheid
6
90 kgRajović
7
74 kgConsonni
8
60 kgBlikra
9
75 kgGuerreiro
10
65 kgGroßschartner
11
64 kgOliveira
12
68 kgMezgec
13
72 kgFormolo
14
62 kgGibbons
15
70 kgFedeli
16
65 kgFredheim
17
72 kgTizza
18
58 kgCôté
19
74 kgSajnok
20
75 kgAlabdulmunim
21
64 kg
1
87 kgGroenewegen
2
70 kgWærenskjold
3
92 kgBol
4
83 kgKanter
5
68 kgWalscheid
6
90 kgRajović
7
74 kgConsonni
8
60 kgBlikra
9
75 kgGuerreiro
10
65 kgGroßschartner
11
64 kgOliveira
12
68 kgMezgec
13
72 kgFormolo
14
62 kgGibbons
15
70 kgFedeli
16
65 kgFredheim
17
72 kgTizza
18
58 kgCôté
19
74 kgSajnok
20
75 kgAlabdulmunim
21
64 kg
Weight (KG) →
Result →
92
58
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | MILAN Jonathan | 87 |
2 | GROENEWEGEN Dylan | 70 |
3 | WÆRENSKJOLD Søren | 92 |
4 | BOL Cees | 83 |
5 | KANTER Max | 68 |
6 | WALSCHEID Max | 90 |
7 | RAJOVIĆ Dušan | 74 |
8 | CONSONNI Simone | 60 |
9 | BLIKRA Erlend | 75 |
10 | GUERREIRO Ruben | 65 |
11 | GROßSCHARTNER Felix | 64 |
12 | OLIVEIRA Ivo | 68 |
13 | MEZGEC Luka | 72 |
14 | FORMOLO Davide | 62 |
15 | GIBBONS Ryan | 70 |
16 | FEDELI Alessandro | 65 |
17 | FREDHEIM Stian | 72 |
18 | TIZZA Marco | 58 |
19 | CÔTÉ Pier-André | 74 |
20 | SAJNOK Szymon | 75 |
21 | ALABDULMUNIM Azzam | 64 |