Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 12
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Wærenskjold
1
92 kgMulubrhan
3
60 kgGroenewegen
4
70 kgEekhoff
5
75 kgMerlier
6
76 kgCoquard
7
59 kgRajović
8
74 kgWarlop
9
71 kgde Kleijn
10
68 kgPluimers
11
67 kgMalucelli
12
68 kgMolano
13
72 kgZijlaard
14
73 kgLatour
15
66 kgSyritsa
16
85 kgCimolai
17
70 kgRomeo
18
75 kg
1
92 kgMulubrhan
3
60 kgGroenewegen
4
70 kgEekhoff
5
75 kgMerlier
6
76 kgCoquard
7
59 kgRajović
8
74 kgWarlop
9
71 kgde Kleijn
10
68 kgPluimers
11
67 kgMalucelli
12
68 kgMolano
13
72 kgZijlaard
14
73 kgLatour
15
66 kgSyritsa
16
85 kgCimolai
17
70 kgRomeo
18
75 kg
Weight (KG) →
Result →
92
59
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | WÆRENSKJOLD Søren | 92 |
3 | MULUBRHAN Henok | 60 |
4 | GROENEWEGEN Dylan | 70 |
5 | EEKHOFF Nils | 75 |
6 | MERLIER Tim | 76 |
7 | COQUARD Bryan | 59 |
8 | RAJOVIĆ Dušan | 74 |
9 | WARLOP Jordi | 71 |
10 | DE KLEIJN Arvid | 68 |
11 | PLUIMERS Rick | 67 |
12 | MALUCELLI Matteo | 68 |
13 | MOLANO Juan Sebastián | 72 |
14 | ZIJLAARD Maikel | 73 |
15 | LATOUR Pierre | 66 |
16 | SYRITSA Gleb | 85 |
17 | CIMOLAI Davide | 70 |
18 | ROMEO Iván | 75 |