Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Merlier
2
76 kgWærenskjold
3
92 kgde Kleijn
4
68 kgMulubrhan
5
60 kgGroenewegen
6
70 kgRajović
7
74 kgCoquard
8
59 kgEekhoff
9
75 kgMolano
10
72 kgMezgec
11
72 kgWarlop
12
71 kgPluimers
13
67 kgOliveira
14
66 kgMalucelli
15
68 kgZijlaard
16
73 kgSyritsa
17
85 kgHamilton
18
71 kgLatour
19
66 kgRomeo
20
75 kgCimolai
21
70 kg
2
76 kgWærenskjold
3
92 kgde Kleijn
4
68 kgMulubrhan
5
60 kgGroenewegen
6
70 kgRajović
7
74 kgCoquard
8
59 kgEekhoff
9
75 kgMolano
10
72 kgMezgec
11
72 kgWarlop
12
71 kgPluimers
13
67 kgOliveira
14
66 kgMalucelli
15
68 kgZijlaard
16
73 kgSyritsa
17
85 kgHamilton
18
71 kgLatour
19
66 kgRomeo
20
75 kgCimolai
21
70 kg
Weight (KG) →
Result →
92
59
2
21
# | Rider | Weight (KG) |
---|---|---|
2 | MERLIER Tim | 76 |
3 | WÆRENSKJOLD Søren | 92 |
4 | DE KLEIJN Arvid | 68 |
5 | MULUBRHAN Henok | 60 |
6 | GROENEWEGEN Dylan | 70 |
7 | RAJOVIĆ Dušan | 74 |
8 | COQUARD Bryan | 59 |
9 | EEKHOFF Nils | 75 |
10 | MOLANO Juan Sebastián | 72 |
11 | MEZGEC Luka | 72 |
12 | WARLOP Jordi | 71 |
13 | PLUIMERS Rick | 67 |
14 | OLIVEIRA Rui | 66 |
15 | MALUCELLI Matteo | 68 |
16 | ZIJLAARD Maikel | 73 |
17 | SYRITSA Gleb | 85 |
18 | HAMILTON Lucas | 71 |
19 | LATOUR Pierre | 66 |
20 | ROMEO Iván | 75 |
21 | CIMOLAI Davide | 70 |