Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Merlier
1
76 kgWærenskjold
3
92 kgCoquard
4
59 kgde Kleijn
5
68 kgYates
6
58 kgMezgec
7
72 kgLecerf
8
54 kgPluimers
9
67 kgRajović
10
74 kgFisher-Black
11
69 kgLatour
12
66 kgMajka
13
62 kgOliveira
14
66 kgWarlop
16
71 kgCimolai
17
70 kgMoschetti
18
73 kgBrambilla
19
57 kgMalucelli
20
68 kgSobrero
21
63 kgSyritsa
22
85 kgZijlaard
23
73 kgFormolo
24
62 kgRomeo
25
75 kgHamilton
26
71 kg
1
76 kgWærenskjold
3
92 kgCoquard
4
59 kgde Kleijn
5
68 kgYates
6
58 kgMezgec
7
72 kgLecerf
8
54 kgPluimers
9
67 kgRajović
10
74 kgFisher-Black
11
69 kgLatour
12
66 kgMajka
13
62 kgOliveira
14
66 kgWarlop
16
71 kgCimolai
17
70 kgMoschetti
18
73 kgBrambilla
19
57 kgMalucelli
20
68 kgSobrero
21
63 kgSyritsa
22
85 kgZijlaard
23
73 kgFormolo
24
62 kgRomeo
25
75 kgHamilton
26
71 kg
Weight (KG) →
Result →
92
54
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | MERLIER Tim | 76 |
3 | WÆRENSKJOLD Søren | 92 |
4 | COQUARD Bryan | 59 |
5 | DE KLEIJN Arvid | 68 |
6 | YATES Simon | 58 |
7 | MEZGEC Luka | 72 |
8 | LECERF Junior | 54 |
9 | PLUIMERS Rick | 67 |
10 | RAJOVIĆ Dušan | 74 |
11 | FISHER-BLACK Finn | 69 |
12 | LATOUR Pierre | 66 |
13 | MAJKA Rafał | 62 |
14 | OLIVEIRA Rui | 66 |
16 | WARLOP Jordi | 71 |
17 | CIMOLAI Davide | 70 |
18 | MOSCHETTI Matteo | 73 |
19 | BRAMBILLA Gianluca | 57 |
20 | MALUCELLI Matteo | 68 |
21 | SOBRERO Matteo | 63 |
22 | SYRITSA Gleb | 85 |
23 | ZIJLAARD Maikel | 73 |
24 | FORMOLO Davide | 62 |
25 | ROMEO Iván | 75 |
26 | HAMILTON Lucas | 71 |