Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Merlier
1
76 kgMolano
2
72 kgGroenewegen
3
70 kgPidcock
4
58 kgMoschetti
5
73 kgKepplinger
6
70 kgBarbier
7
69 kgHatherly
8
65 kgZijlaard
9
73 kgDunbar
10
57 kgde Bod
11
66 kgBrustenga
13
80 kgWalscheid
15
91 kgVoisard
16
56 kgFedorov
17
80 kgDauphin
18
70 kgMajka
19
62 kgAznar
20
59 kgWeemaes
21
73 kgFancellu
22
62 kgD'Amato
23
69 kg
1
76 kgMolano
2
72 kgGroenewegen
3
70 kgPidcock
4
58 kgMoschetti
5
73 kgKepplinger
6
70 kgBarbier
7
69 kgHatherly
8
65 kgZijlaard
9
73 kgDunbar
10
57 kgde Bod
11
66 kgBrustenga
13
80 kgWalscheid
15
91 kgVoisard
16
56 kgFedorov
17
80 kgDauphin
18
70 kgMajka
19
62 kgAznar
20
59 kgWeemaes
21
73 kgFancellu
22
62 kgD'Amato
23
69 kg
Weight (KG) →
Result →
91
56
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | MERLIER Tim | 76 |
2 | MOLANO Juan Sebastián | 72 |
3 | GROENEWEGEN Dylan | 70 |
4 | PIDCOCK Thomas | 58 |
5 | MOSCHETTI Matteo | 73 |
6 | KEPPLINGER Rainer | 70 |
7 | BARBIER Pierre | 69 |
8 | HATHERLY Alan | 65 |
9 | ZIJLAARD Maikel | 73 |
10 | DUNBAR Eddie | 57 |
11 | DE BOD Stefan | 66 |
13 | BRUSTENGA Marc | 80 |
15 | WALSCHEID Max | 91 |
16 | VOISARD Yannis | 56 |
17 | FEDOROV Yevgeniy | 80 |
18 | DAUPHIN Florian | 70 |
19 | MAJKA Rafał | 62 |
20 | AZNAR Hugo | 59 |
21 | WEEMAES Sasha | 73 |
22 | FANCELLU Alessandro | 62 |
23 | D'AMATO Andrea | 69 |