Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Pidcock
1
58 kgMerlier
2
76 kgKepplinger
3
70 kgHatherly
4
65 kgMolano
5
72 kgGroenewegen
6
70 kgMoschetti
7
73 kgDunbar
8
57 kgBarbier
9
69 kgZijlaard
10
73 kgKulset
11
58 kgde Bod
12
66 kgBrustenga
15
80 kgWalscheid
17
90 kgVoisard
18
56 kgFancellu
19
62 kgFedorov
20
80 kgDauphin
22
70 kgMajka
23
62 kgAznar
24
59 kgWeemaes
26
73 kgvan der Meulen
27
67 kgD'Amato
28
69 kg
1
58 kgMerlier
2
76 kgKepplinger
3
70 kgHatherly
4
65 kgMolano
5
72 kgGroenewegen
6
70 kgMoschetti
7
73 kgDunbar
8
57 kgBarbier
9
69 kgZijlaard
10
73 kgKulset
11
58 kgde Bod
12
66 kgBrustenga
15
80 kgWalscheid
17
90 kgVoisard
18
56 kgFancellu
19
62 kgFedorov
20
80 kgDauphin
22
70 kgMajka
23
62 kgAznar
24
59 kgWeemaes
26
73 kgvan der Meulen
27
67 kgD'Amato
28
69 kg
Weight (KG) →
Result →
90
56
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | PIDCOCK Thomas | 58 |
2 | MERLIER Tim | 76 |
3 | KEPPLINGER Rainer | 70 |
4 | HATHERLY Alan | 65 |
5 | MOLANO Juan Sebastián | 72 |
6 | GROENEWEGEN Dylan | 70 |
7 | MOSCHETTI Matteo | 73 |
8 | DUNBAR Eddie | 57 |
9 | BARBIER Pierre | 69 |
10 | ZIJLAARD Maikel | 73 |
11 | KULSET Johannes | 58 |
12 | DE BOD Stefan | 66 |
15 | BRUSTENGA Marc | 80 |
17 | WALSCHEID Max | 90 |
18 | VOISARD Yannis | 56 |
19 | FANCELLU Alessandro | 62 |
20 | FEDOROV Yevgeniy | 80 |
22 | DAUPHIN Florian | 70 |
23 | MAJKA Rafał | 62 |
24 | AZNAR Hugo | 59 |
26 | WEEMAES Sasha | 73 |
27 | VAN DER MEULEN Max | 67 |
28 | D'AMATO Andrea | 69 |