Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Nijdam
1
70 kgSergeant
5
76 kgBauer
6
72 kgGayant
9
69 kgPlanckaert
12
69 kgLilholt
15
72 kgDe Wilde
17
70 kgDernies
18
75 kgBreukink
24
70 kgBugno
27
68 kgDe Wolf
28
75 kgMuseeuw
31
71 kgSkibby
32
70 kgVanderaerden
36
74 kgArntz
38
70 kgTolhoek
55
63 kgSolleveld
67
93 kgHoste
68
76 kgGianetti
82
62 kgRiis
93
71 kg
1
70 kgSergeant
5
76 kgBauer
6
72 kgGayant
9
69 kgPlanckaert
12
69 kgLilholt
15
72 kgDe Wilde
17
70 kgDernies
18
75 kgBreukink
24
70 kgBugno
27
68 kgDe Wolf
28
75 kgMuseeuw
31
71 kgSkibby
32
70 kgVanderaerden
36
74 kgArntz
38
70 kgTolhoek
55
63 kgSolleveld
67
93 kgHoste
68
76 kgGianetti
82
62 kgRiis
93
71 kg
Weight (KG) →
Result →
93
62
1
93
# | Rider | Weight (KG) |
---|---|---|
1 | NIJDAM Jelle | 70 |
5 | SERGEANT Marc | 76 |
6 | BAUER Steve | 72 |
9 | GAYANT Martial | 69 |
12 | PLANCKAERT Eddy | 69 |
15 | LILHOLT Søren | 72 |
17 | DE WILDE Etienne | 70 |
18 | DERNIES Michel | 75 |
24 | BREUKINK Erik | 70 |
27 | BUGNO Gianni | 68 |
28 | DE WOLF Fons | 75 |
31 | MUSEEUW Johan | 71 |
32 | SKIBBY Jesper | 70 |
36 | VANDERAERDEN Eric | 74 |
38 | ARNTZ Marcel | 70 |
55 | TOLHOEK Patrick | 63 |
67 | SOLLEVELD Gerrit | 93 |
68 | HOSTE Frank | 76 |
82 | GIANETTI Mauro | 62 |
93 | RIIS Bjarne | 71 |