Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Goris
1
87 kgBoucher
2
78 kgAmorison
3
70 kgvan Dijk
5
74 kgHavik
7
66 kgLodewyck
8
70 kgKruopis
9
80 kgBarbé
12
75 kgNeyens
13
74 kgGoos
14
65 kgNeirynck
15
71 kgCaethoven
16
67 kgOmloop
18
78 kgJacobs
19
68 kgCappelle
22
71 kgLambert-Lemay
23
81 kgKusztor
27
61 kgde Wilde
28
74 kg
1
87 kgBoucher
2
78 kgAmorison
3
70 kgvan Dijk
5
74 kgHavik
7
66 kgLodewyck
8
70 kgKruopis
9
80 kgBarbé
12
75 kgNeyens
13
74 kgGoos
14
65 kgNeirynck
15
71 kgCaethoven
16
67 kgOmloop
18
78 kgJacobs
19
68 kgCappelle
22
71 kgLambert-Lemay
23
81 kgKusztor
27
61 kgde Wilde
28
74 kg
Weight (KG) →
Result →
87
61
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | GORIS Rob | 87 |
2 | BOUCHER David | 78 |
3 | AMORISON Frédéric | 70 |
5 | VAN DIJK Stefan | 74 |
7 | HAVIK Yoeri | 66 |
8 | LODEWYCK Klaas | 70 |
9 | KRUOPIS Aidis | 80 |
12 | BARBÉ Koen | 75 |
13 | NEYENS Maarten | 74 |
14 | GOOS Marc | 65 |
15 | NEIRYNCK Kevin | 71 |
16 | CAETHOVEN Steven | 67 |
18 | OMLOOP Geert | 78 |
19 | JACOBS Pieter | 68 |
22 | CAPPELLE Andy | 71 |
23 | LAMBERT-LEMAY Simon | 81 |
27 | KUSZTOR Péter | 61 |
28 | DE WILDE Sjef | 74 |