Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 31
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Kristoff
1
78 kgBennett
2
73 kgBoasson Hagen
3
75 kgZurlo
4
70 kgVan Staeyen
6
62 kgBonifazio
7
72 kgKolář
8
90 kgCapiot
10
69 kgLaengen
11
79 kgMcLay
12
72 kgGerts
13
71 kgGuldhammer
14
66 kgBideau
15
73 kgKamyshev
16
67 kgEnger
17
69 kgElmiger
18
73 kgCam
19
61 kgTurgis
20
70 kgAyazbayev
22
75 kg
1
78 kgBennett
2
73 kgBoasson Hagen
3
75 kgZurlo
4
70 kgVan Staeyen
6
62 kgBonifazio
7
72 kgKolář
8
90 kgCapiot
10
69 kgLaengen
11
79 kgMcLay
12
72 kgGerts
13
71 kgGuldhammer
14
66 kgBideau
15
73 kgKamyshev
16
67 kgEnger
17
69 kgElmiger
18
73 kgCam
19
61 kgTurgis
20
70 kgAyazbayev
22
75 kg
Weight (KG) →
Result →
90
61
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | KRISTOFF Alexander | 78 |
2 | BENNETT Sam | 73 |
3 | BOASSON HAGEN Edvald | 75 |
4 | ZURLO Federico | 70 |
6 | VAN STAEYEN Michael | 62 |
7 | BONIFAZIO Niccolò | 72 |
8 | KOLÁŘ Michael | 90 |
10 | CAPIOT Amaury | 69 |
11 | LAENGEN Vegard Stake | 79 |
12 | MCLAY Daniel | 72 |
13 | GERTS Floris | 71 |
14 | GULDHAMMER Rasmus | 66 |
15 | BIDEAU Jean-Marc | 73 |
16 | KAMYSHEV Arman | 67 |
17 | ENGER Sondre Holst | 69 |
18 | ELMIGER Martin | 73 |
19 | CAM Maxime | 61 |
20 | TURGIS Anthony | 70 |
22 | AYAZBAYEV Maxat | 75 |