Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 63
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
van Poppel
1
82 kgDegenkolb
2
82 kgKristoff
3
78 kgHofland
4
71 kgRast
6
80 kgNizzolo
7
72 kgNapolitano
8
81 kgDémare
9
76 kgSchillinger
10
72 kgBonifazio
12
72 kgOss
13
75 kgTleubayev
14
70 kgGuardini
15
66 kgGatto
16
67 kgTiller
17
84 kgThomson
18
75 kgCam
19
61 kgMoscon
22
71 kgJensen
23
67 kgHagen
24
65 kg
1
82 kgDegenkolb
2
82 kgKristoff
3
78 kgHofland
4
71 kgRast
6
80 kgNizzolo
7
72 kgNapolitano
8
81 kgDémare
9
76 kgSchillinger
10
72 kgBonifazio
12
72 kgOss
13
75 kgTleubayev
14
70 kgGuardini
15
66 kgGatto
16
67 kgTiller
17
84 kgThomson
18
75 kgCam
19
61 kgMoscon
22
71 kgJensen
23
67 kgHagen
24
65 kg
Weight (KG) →
Result →
84
61
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | VAN POPPEL Danny | 82 |
2 | DEGENKOLB John | 82 |
3 | KRISTOFF Alexander | 78 |
4 | HOFLAND Moreno | 71 |
6 | RAST Grégory | 80 |
7 | NIZZOLO Giacomo | 72 |
8 | NAPOLITANO Danilo | 81 |
9 | DÉMARE Arnaud | 76 |
10 | SCHILLINGER Andreas | 72 |
12 | BONIFAZIO Niccolò | 72 |
13 | OSS Daniel | 75 |
14 | TLEUBAYEV Ruslan | 70 |
15 | GUARDINI Andrea | 66 |
16 | GATTO Oscar | 67 |
17 | TILLER Rasmus | 84 |
18 | THOMSON Jay Robert | 75 |
19 | CAM Maxime | 61 |
22 | MOSCON Gianni | 71 |
23 | JENSEN August | 67 |
24 | HAGEN Carl Fredrik | 65 |