Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Eiking
1
75 kgCummings
2
73 kgSlagter
4
57 kgLutsenko
5
74 kgBarguil
6
61 kgHoelgaard
7
74 kgCalmejane
8
70 kgEriksson
9
64 kgvan Poppel
10
82 kgSbaragli
11
74 kgTaaramäe
12
68 kgHoule
13
72 kgVan Asbroeck
14
72 kgWillems
15
67 kgNeilands
16
69 kgJansen
17
83 kgPacher
18
62 kgvan der Poel
19
75 kgCarr
20
66 kgVangstad
21
70 kgCoquard
22
59 kgVan Hecke
23
69 kg
1
75 kgCummings
2
73 kgSlagter
4
57 kgLutsenko
5
74 kgBarguil
6
61 kgHoelgaard
7
74 kgCalmejane
8
70 kgEriksson
9
64 kgvan Poppel
10
82 kgSbaragli
11
74 kgTaaramäe
12
68 kgHoule
13
72 kgVan Asbroeck
14
72 kgWillems
15
67 kgNeilands
16
69 kgJansen
17
83 kgPacher
18
62 kgvan der Poel
19
75 kgCarr
20
66 kgVangstad
21
70 kgCoquard
22
59 kgVan Hecke
23
69 kg
Weight (KG) →
Result →
83
57
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | EIKING Odd Christian | 75 |
2 | CUMMINGS Steve | 73 |
4 | SLAGTER Tom-Jelte | 57 |
5 | LUTSENKO Alexey | 74 |
6 | BARGUIL Warren | 61 |
7 | HOELGAARD Markus | 74 |
8 | CALMEJANE Lilian | 70 |
9 | ERIKSSON Lucas | 64 |
10 | VAN POPPEL Danny | 82 |
11 | SBARAGLI Kristian | 74 |
12 | TAARAMÄE Rein | 68 |
13 | HOULE Hugo | 72 |
14 | VAN ASBROECK Tom | 72 |
15 | WILLEMS Thimo | 67 |
16 | NEILANDS Krists | 69 |
17 | JANSEN Amund Grøndahl | 83 |
18 | PACHER Quentin | 62 |
19 | VAN DER POEL Mathieu | 75 |
20 | CARR Simon | 66 |
21 | VANGSTAD Andreas | 70 |
22 | COQUARD Bryan | 59 |
23 | VAN HECKE Preben | 69 |