Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.9 * weight + 323
This means that on average for every extra kilogram weight a rider loses -3.9 positions in the result.
Bagdonas
1
78 kgNavardauskas
2
79 kgOjavee
5
80 kgBoev
7
74 kgVasylyuk
11
65 kgBēcis
12
82 kgKirsipuu
16
80 kgFlaksis
18
79 kgDžervus
23
77 kgBogdanovičs
33
68 kgPütsep
39
69 kgStępniak
62
75 kgWong
66
76 kgPruus
69
71 kgSizko
91
70 kgBeuchat
93
62 kgStachowiak
97
62 kgCholakov
99
66 kg
1
78 kgNavardauskas
2
79 kgOjavee
5
80 kgBoev
7
74 kgVasylyuk
11
65 kgBēcis
12
82 kgKirsipuu
16
80 kgFlaksis
18
79 kgDžervus
23
77 kgBogdanovičs
33
68 kgPütsep
39
69 kgStępniak
62
75 kgWong
66
76 kgPruus
69
71 kgSizko
91
70 kgBeuchat
93
62 kgStachowiak
97
62 kgCholakov
99
66 kg
Weight (KG) →
Result →
82
62
1
99
# | Rider | Weight (KG) |
---|---|---|
1 | BAGDONAS Gediminas | 78 |
2 | NAVARDAUSKAS Ramūnas | 79 |
5 | OJAVEE Mart | 80 |
7 | BOEV Igor | 74 |
11 | VASYLYUK Andriy | 65 |
12 | BĒCIS Armands | 82 |
16 | KIRSIPUU Jaan | 80 |
18 | FLAKSIS Andžs | 79 |
23 | DŽERVUS Darijus | 77 |
33 | BOGDANOVIČS Māris | 68 |
39 | PÜTSEP Erki | 69 |
62 | STĘPNIAK Grzegorz | 75 |
66 | WONG Steven | 76 |
69 | PRUUS Peeter | 71 |
91 | SIZKO Antti | 70 |
93 | BEUCHAT Roger | 62 |
97 | STACHOWIAK Adam | 62 |
99 | CHOLAKOV Stanimir | 66 |