Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -4 * weight + 336
This means that on average for every extra kilogram weight a rider loses -4 positions in the result.
Bagdonas
1
78 kgNavardauskas
2
79 kgKirsipuu
3
80 kgBēcis
5
82 kgOjavee
9
80 kgBoev
11
74 kgFlaksis
13
79 kgVasylyuk
17
65 kgDžervus
23
77 kgBogdanovičs
33
68 kgPütsep
38
69 kgStępniak
60
75 kgWong
64
76 kgBeuchat
86
62 kgStachowiak
90
62 kgSizko
97
70 kgPruus
98
71 kgCholakov
99
66 kg
1
78 kgNavardauskas
2
79 kgKirsipuu
3
80 kgBēcis
5
82 kgOjavee
9
80 kgBoev
11
74 kgFlaksis
13
79 kgVasylyuk
17
65 kgDžervus
23
77 kgBogdanovičs
33
68 kgPütsep
38
69 kgStępniak
60
75 kgWong
64
76 kgBeuchat
86
62 kgStachowiak
90
62 kgSizko
97
70 kgPruus
98
71 kgCholakov
99
66 kg
Weight (KG) →
Result →
82
62
1
99
# | Rider | Weight (KG) |
---|---|---|
1 | BAGDONAS Gediminas | 78 |
2 | NAVARDAUSKAS Ramūnas | 79 |
3 | KIRSIPUU Jaan | 80 |
5 | BĒCIS Armands | 82 |
9 | OJAVEE Mart | 80 |
11 | BOEV Igor | 74 |
13 | FLAKSIS Andžs | 79 |
17 | VASYLYUK Andriy | 65 |
23 | DŽERVUS Darijus | 77 |
33 | BOGDANOVIČS Māris | 68 |
38 | PÜTSEP Erki | 69 |
60 | STĘPNIAK Grzegorz | 75 |
64 | WONG Steven | 76 |
86 | BEUCHAT Roger | 62 |
90 | STACHOWIAK Adam | 62 |
97 | SIZKO Antti | 70 |
98 | PRUUS Peeter | 71 |
99 | CHOLAKOV Stanimir | 66 |