Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 141
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Bagdonas
1
78 kgKirsipuu
2
80 kgPütsep
4
69 kgStępniak
6
75 kgDžervus
9
77 kgBoev
10
74 kgNavardauskas
12
79 kgBogdanovičs
13
68 kgVasylyuk
18
65 kgOjavee
20
80 kgWong
24
76 kgBeuchat
30
62 kgBēcis
35
82 kgStachowiak
43
62 kgFlaksis
69
79 kgSizko
89
70 kgPruus
98
71 kgCholakov
99
66 kg
1
78 kgKirsipuu
2
80 kgPütsep
4
69 kgStępniak
6
75 kgDžervus
9
77 kgBoev
10
74 kgNavardauskas
12
79 kgBogdanovičs
13
68 kgVasylyuk
18
65 kgOjavee
20
80 kgWong
24
76 kgBeuchat
30
62 kgBēcis
35
82 kgStachowiak
43
62 kgFlaksis
69
79 kgSizko
89
70 kgPruus
98
71 kgCholakov
99
66 kg
Weight (KG) →
Result →
82
62
1
99
# | Rider | Weight (KG) |
---|---|---|
1 | BAGDONAS Gediminas | 78 |
2 | KIRSIPUU Jaan | 80 |
4 | PÜTSEP Erki | 69 |
6 | STĘPNIAK Grzegorz | 75 |
9 | DŽERVUS Darijus | 77 |
10 | BOEV Igor | 74 |
12 | NAVARDAUSKAS Ramūnas | 79 |
13 | BOGDANOVIČS Māris | 68 |
18 | VASYLYUK Andriy | 65 |
20 | OJAVEE Mart | 80 |
24 | WONG Steven | 76 |
30 | BEUCHAT Roger | 62 |
35 | BĒCIS Armands | 82 |
43 | STACHOWIAK Adam | 62 |
69 | FLAKSIS Andžs | 79 |
89 | SIZKO Antti | 70 |
98 | PRUUS Peeter | 71 |
99 | CHOLAKOV Stanimir | 66 |