Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 75
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Laas
1
76 kgAagaard Hansen
2
77 kgHeming
3
68 kgÄrm
4
75 kgUhlig
6
69 kgŠtoček
7
80 kgBárta
9
79 kgJanuškevičius
13
72 kgRohde
14
75 kgRoos
15
76 kgCortjens
17
76 kgAvondts
19
62 kgBogdanovičs
20
68 kgKurits
21
74 kgRäim
22
69 kgLašinis
24
69 kgLenné
25
65 kgHeinrich
27
76 kgKiskonen
29
64 kgBelmans
30
72 kg
1
76 kgAagaard Hansen
2
77 kgHeming
3
68 kgÄrm
4
75 kgUhlig
6
69 kgŠtoček
7
80 kgBárta
9
79 kgJanuškevičius
13
72 kgRohde
14
75 kgRoos
15
76 kgCortjens
17
76 kgAvondts
19
62 kgBogdanovičs
20
68 kgKurits
21
74 kgRäim
22
69 kgLašinis
24
69 kgLenné
25
65 kgHeinrich
27
76 kgKiskonen
29
64 kgBelmans
30
72 kg
Weight (KG) →
Result →
80
62
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | LAAS Martin | 76 |
2 | AAGAARD HANSEN Tobias | 77 |
3 | HEMING Miká | 68 |
4 | ÄRM Rait | 75 |
6 | UHLIG Henri | 69 |
7 | ŠTOČEK Matúš | 80 |
9 | BÁRTA Tomáš | 79 |
13 | JANUŠKEVIČIUS Mantas | 72 |
14 | ROHDE Leon | 75 |
15 | ROOS Andre | 76 |
17 | CORTJENS Ryan | 76 |
19 | AVONDTS Mathis | 62 |
20 | BOGDANOVIČS Māris | 68 |
21 | KURITS Joonas | 74 |
22 | RÄIM Mihkel | 69 |
24 | LAŠINIS Venantas | 69 |
25 | LENNÉ Arthur | 65 |
27 | HEINRICH Nicolas | 76 |
29 | KISKONEN Siim | 64 |
30 | BELMANS Lennert | 72 |