Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 66
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Laas
1
76 kgAagaard Hansen
2
77 kgUhlig
3
69 kgHeming
5
68 kgÄrm
7
75 kgŠtoček
8
80 kgBárta
9
79 kgKurits
12
74 kgLindahl
13
75 kgJanuškevičius
15
72 kgLovidius
16
70 kgRohde
17
75 kgRoos
20
76 kgCortjens
21
76 kgAvondts
23
62 kgBogdanovičs
24
68 kgRäim
25
69 kgLašinis
28
69 kgLenné
29
65 kgHeinrich
31
76 kgBelmans
33
72 kgKiskonen
35
64 kgWeinstein
36
80 kg
1
76 kgAagaard Hansen
2
77 kgUhlig
3
69 kgHeming
5
68 kgÄrm
7
75 kgŠtoček
8
80 kgBárta
9
79 kgKurits
12
74 kgLindahl
13
75 kgJanuškevičius
15
72 kgLovidius
16
70 kgRohde
17
75 kgRoos
20
76 kgCortjens
21
76 kgAvondts
23
62 kgBogdanovičs
24
68 kgRäim
25
69 kgLašinis
28
69 kgLenné
29
65 kgHeinrich
31
76 kgBelmans
33
72 kgKiskonen
35
64 kgWeinstein
36
80 kg
Weight (KG) →
Result →
80
62
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | LAAS Martin | 76 |
2 | AAGAARD HANSEN Tobias | 77 |
3 | UHLIG Henri | 69 |
5 | HEMING Miká | 68 |
7 | ÄRM Rait | 75 |
8 | ŠTOČEK Matúš | 80 |
9 | BÁRTA Tomáš | 79 |
12 | KURITS Joonas | 74 |
13 | LINDAHL Jesper | 75 |
15 | JANUŠKEVIČIUS Mantas | 72 |
16 | LOVIDIUS Edvin | 70 |
17 | ROHDE Leon | 75 |
20 | ROOS Andre | 76 |
21 | CORTJENS Ryan | 76 |
23 | AVONDTS Mathis | 62 |
24 | BOGDANOVIČS Māris | 68 |
25 | RÄIM Mihkel | 69 |
28 | LAŠINIS Venantas | 69 |
29 | LENNÉ Arthur | 65 |
31 | HEINRICH Nicolas | 76 |
33 | BELMANS Lennert | 72 |
35 | KISKONEN Siim | 64 |
36 | WEINSTEIN Domenic | 80 |