Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 70
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Ärm
1
75 kgTamm
3
73 kgPajur
4
72 kgNisu
6
84 kgDirnbauer
7
67 kgReguigui
8
69 kgNielsen
9
76 kgLovidius
18
68 kgVahtra
22
85 kgLychou
25
78 kgHammerschmid
27
62 kgLauk
28
69 kgMalinen
29
60 kgRiegler
32
65 kgAdomaitis
34
88 kgHedeås
47
74 kgKlimavičius
49
69 kgRubiano
52
58 kgUulimaa
53
69 kgLindahl
57
75 kgBichlmann
59
72 kgJürisaar
60
62 kgKarpenko
62
77 kg
1
75 kgTamm
3
73 kgPajur
4
72 kgNisu
6
84 kgDirnbauer
7
67 kgReguigui
8
69 kgNielsen
9
76 kgLovidius
18
68 kgVahtra
22
85 kgLychou
25
78 kgHammerschmid
27
62 kgLauk
28
69 kgMalinen
29
60 kgRiegler
32
65 kgAdomaitis
34
88 kgHedeås
47
74 kgKlimavičius
49
69 kgRubiano
52
58 kgUulimaa
53
69 kgLindahl
57
75 kgBichlmann
59
72 kgJürisaar
60
62 kgKarpenko
62
77 kg
Weight (KG) →
Result →
88
58
1
62
# | Rider | Weight (KG) |
---|---|---|
1 | ÄRM Rait | 75 |
3 | TAMM Lauri | 73 |
4 | PAJUR Markus | 72 |
6 | NISU Oskar | 84 |
7 | DIRNBAUER Josef | 67 |
8 | REGUIGUI Youcef | 69 |
9 | NIELSEN Max | 76 |
18 | LOVIDIUS Gustav | 68 |
22 | VAHTRA Norman | 85 |
25 | LYCHOU Viktor | 78 |
27 | HAMMERSCHMID Marvin | 62 |
28 | LAUK Karl Patrick | 69 |
29 | MALINEN Sampo | 60 |
32 | RIEGLER Nikolas | 65 |
34 | ADOMAITIS Rokas | 88 |
47 | HEDEÅS Victor | 74 |
49 | KLIMAVIČIUS Nikolas | 69 |
52 | RUBIANO Miguel Angel | 58 |
53 | UULIMAA Ats | 69 |
57 | LINDAHL Jesper | 75 |
59 | BICHLMANN Daniel | 72 |
60 | JÜRISAAR Tauri | 62 |
62 | KARPENKO Gleb | 77 |