Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 131
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Wagner
5
75 kgRaboň
10
74 kgKiendyś
25
78 kgHuzarski
34
69 kgZamana
35
74 kgWadecki
37
70 kgPiątek
42
71 kgLisowicz
43
85 kgPrzydział
44
80 kgMazur
45
73 kgRiška
49
73 kgBodnar
57
68 kgChmielewski
59
72 kgRomanik
62
62 kgWitecki
63
70 kgBengsch
67
85 kgPawlak
68
73 kgSapa
69
82 kgMironov
70
68 kgKrupa
75
74 kgVoskamp
81
75 kgMartin
89
75 kgFirsanov
108
58 kg
5
75 kgRaboň
10
74 kgKiendyś
25
78 kgHuzarski
34
69 kgZamana
35
74 kgWadecki
37
70 kgPiątek
42
71 kgLisowicz
43
85 kgPrzydział
44
80 kgMazur
45
73 kgRiška
49
73 kgBodnar
57
68 kgChmielewski
59
72 kgRomanik
62
62 kgWitecki
63
70 kgBengsch
67
85 kgPawlak
68
73 kgSapa
69
82 kgMironov
70
68 kgKrupa
75
74 kgVoskamp
81
75 kgMartin
89
75 kgFirsanov
108
58 kg
Weight (KG) →
Result →
85
58
5
108
# | Rider | Weight (KG) |
---|---|---|
5 | WAGNER Robert | 75 |
10 | RABOŇ František | 74 |
25 | KIENDYŚ Tomasz | 78 |
34 | HUZARSKI Bartosz | 69 |
35 | ZAMANA Cezary | 74 |
37 | WADECKI Piotr | 70 |
42 | PIĄTEK Zbigniew | 71 |
43 | LISOWICZ Tomasz | 85 |
44 | PRZYDZIAŁ Piotr | 80 |
45 | MAZUR Peter | 73 |
49 | RIŠKA Martin | 73 |
57 | BODNAR Łukasz | 68 |
59 | CHMIELEWSKI Piotr | 72 |
62 | ROMANIK Radosław | 62 |
63 | WITECKI Mariusz | 70 |
67 | BENGSCH Robert | 85 |
68 | PAWLAK Wojciech | 73 |
69 | SAPA Marcin | 82 |
70 | MIRONOV Alexander | 68 |
75 | KRUPA Dawid | 74 |
81 | VOSKAMP Bart | 75 |
89 | MARTIN Tony | 75 |
108 | FIRSANOV Sergey | 58 |