Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 131
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Riška
1
73 kgLampater
2
75 kgBroniš
4
74 kgLisowicz
5
85 kgPawlak
7
73 kgJaniaczyk
9
68 kgSapa
14
82 kgBodnar
15
68 kgKritskiy
17
81 kgKiendyś
23
78 kgBommel
38
75 kgChmielewski
47
72 kgBartko
48
78 kgBengsch
49
85 kgKrupa
54
74 kgGalimzyanov
58
75 kgKomar
69
73 kgRomanik
74
62 kgSerebryakov
83
70 kg
1
73 kgLampater
2
75 kgBroniš
4
74 kgLisowicz
5
85 kgPawlak
7
73 kgJaniaczyk
9
68 kgSapa
14
82 kgBodnar
15
68 kgKritskiy
17
81 kgKiendyś
23
78 kgBommel
38
75 kgChmielewski
47
72 kgBartko
48
78 kgBengsch
49
85 kgKrupa
54
74 kgGalimzyanov
58
75 kgKomar
69
73 kgRomanik
74
62 kgSerebryakov
83
70 kg
Weight (KG) →
Result →
85
62
1
83
# | Rider | Weight (KG) |
---|---|---|
1 | RIŠKA Martin | 73 |
2 | LAMPATER Leif | 75 |
4 | BRONIŠ Roman | 74 |
5 | LISOWICZ Tomasz | 85 |
7 | PAWLAK Wojciech | 73 |
9 | JANIACZYK Błażej | 68 |
14 | SAPA Marcin | 82 |
15 | BODNAR Łukasz | 68 |
17 | KRITSKIY Timofey | 81 |
23 | KIENDYŚ Tomasz | 78 |
38 | BOMMEL Henning | 75 |
47 | CHMIELEWSKI Piotr | 72 |
48 | BARTKO Robert | 78 |
49 | BENGSCH Robert | 85 |
54 | KRUPA Dawid | 74 |
58 | GALIMZYANOV Denis | 75 |
69 | KOMAR Mateusz | 73 |
74 | ROMANIK Radosław | 62 |
83 | SEREBRYAKOV Alexander | 70 |