Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 81
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Pluciński
1
59 kgTaciak
2
68 kgBudiak
5
53 kgManakov
6
77 kgNikitin
8
61 kgZieliński
9
61 kgKaczmarek
11
66 kgBiałobłocki
12
79 kgSerov
13
77 kgZemlyakov
15
70 kgVasilyev
16
70 kgKiendyś
22
78 kgPaluta
29
65 kgNyborg Broge
35
75 kgWitecki
37
70 kgHonkisz
40
61 kgAsgreen
49
75 kgMandrysch
50
73 kgKritskiy
57
81 kgKohut
58
65 kgLarsén
69
82 kgZhurkin
70
77 kgPawlak
78
81 kg
1
59 kgTaciak
2
68 kgBudiak
5
53 kgManakov
6
77 kgNikitin
8
61 kgZieliński
9
61 kgKaczmarek
11
66 kgBiałobłocki
12
79 kgSerov
13
77 kgZemlyakov
15
70 kgVasilyev
16
70 kgKiendyś
22
78 kgPaluta
29
65 kgNyborg Broge
35
75 kgWitecki
37
70 kgHonkisz
40
61 kgAsgreen
49
75 kgMandrysch
50
73 kgKritskiy
57
81 kgKohut
58
65 kgLarsén
69
82 kgZhurkin
70
77 kgPawlak
78
81 kg
Weight (KG) →
Result →
82
53
1
78
# | Rider | Weight (KG) |
---|---|---|
1 | PLUCIŃSKI Leszek | 59 |
2 | TACIAK Mateusz | 68 |
5 | BUDIAK Anatolii | 53 |
6 | MANAKOV Victor | 77 |
8 | NIKITIN Matvey | 61 |
9 | ZIELIńSKI Kamil | 61 |
11 | KACZMAREK Jakub | 66 |
12 | BIAŁOBŁOCKI Marcin | 79 |
13 | SEROV Alexander | 77 |
15 | ZEMLYAKOV Oleg | 70 |
16 | VASILYEV Maksym | 70 |
22 | KIENDYŚ Tomasz | 78 |
29 | PALUTA Michał | 65 |
35 | NYBORG BROGE Nils Lau | 75 |
37 | WITECKI Mariusz | 70 |
40 | HONKISZ Adrian | 61 |
49 | ASGREEN Kasper | 75 |
50 | MANDRYSCH John | 73 |
57 | KRITSKIY Timofey | 81 |
58 | KOHUT Sławomir | 65 |
69 | LARSÉN Richard | 82 |
70 | ZHURKIN Nikolay | 77 |
78 | PAWLAK Tobiasz | 81 |