Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 70
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Zieliński
1
61 kgNikitin
2
61 kgBudyak
3
53 kgPluciński
8
59 kgManakov
9
77 kgSerov
13
77 kgTaciak
14
68 kgBiałobłocki
19
79 kgZemlyakov
20
70 kgKaczmarek
24
66 kgVasilyev
27
70 kgNyborg Broge
34
75 kgKritskiy
35
81 kgWitecki
37
70 kgAsgreen
41
75 kgMandrysch
42
73 kgHonkisz
43
61 kgPaluta
44
65 kgKiendyś
47
78 kgKohut
64
65 kgLarsén
72
82 kgZhurkin
73
77 kgPawlak
75
81 kg
1
61 kgNikitin
2
61 kgBudyak
3
53 kgPluciński
8
59 kgManakov
9
77 kgSerov
13
77 kgTaciak
14
68 kgBiałobłocki
19
79 kgZemlyakov
20
70 kgKaczmarek
24
66 kgVasilyev
27
70 kgNyborg Broge
34
75 kgKritskiy
35
81 kgWitecki
37
70 kgAsgreen
41
75 kgMandrysch
42
73 kgHonkisz
43
61 kgPaluta
44
65 kgKiendyś
47
78 kgKohut
64
65 kgLarsén
72
82 kgZhurkin
73
77 kgPawlak
75
81 kg
Weight (KG) →
Result →
82
53
1
75
# | Rider | Weight (KG) |
---|---|---|
1 | ZIELIńSKI Kamil | 61 |
2 | NIKITIN Matvey | 61 |
3 | BUDYAK Anatoliy | 53 |
8 | PLUCIŃSKI Leszek | 59 |
9 | MANAKOV Victor | 77 |
13 | SEROV Alexander | 77 |
14 | TACIAK Mateusz | 68 |
19 | BIAŁOBŁOCKI Marcin | 79 |
20 | ZEMLYAKOV Oleg | 70 |
24 | KACZMAREK Jakub | 66 |
27 | VASILYEV Maksym | 70 |
34 | NYBORG BROGE Nils Lau | 75 |
35 | KRITSKIY Timofey | 81 |
37 | WITECKI Mariusz | 70 |
41 | ASGREEN Kasper | 75 |
42 | MANDRYSCH John | 73 |
43 | HONKISZ Adrian | 61 |
44 | PALUTA Michał | 65 |
47 | KIENDYŚ Tomasz | 78 |
64 | KOHUT Sławomir | 65 |
72 | LARSÉN Richard | 82 |
73 | ZHURKIN Nikolay | 77 |
75 | PAWLAK Tobiasz | 81 |