Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 27
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Nakajima
3
64 kgPetrov
7
66 kgVrečer
9
68 kgĐurasek
10
56 kgJovanović
11
60 kgStević
17
66 kgMiyazawa
18
61 kgMarin
19
67 kgTzortzakis
24
80 kgBouglas
27
71 kgGerganov
45
60 kgMugerli
46
68 kgLovassy
50
71 kgTybor
59
72 kgNagy
63
52 kgRogina
66
70 kgSzeghalmi
67
66 kgMasuda
71
63 kg
3
64 kgPetrov
7
66 kgVrečer
9
68 kgĐurasek
10
56 kgJovanović
11
60 kgStević
17
66 kgMiyazawa
18
61 kgMarin
19
67 kgTzortzakis
24
80 kgBouglas
27
71 kgGerganov
45
60 kgMugerli
46
68 kgLovassy
50
71 kgTybor
59
72 kgNagy
63
52 kgRogina
66
70 kgSzeghalmi
67
66 kgMasuda
71
63 kg
Weight (KG) →
Result →
80
52
3
71
# | Rider | Weight (KG) |
---|---|---|
3 | NAKAJIMA Yasuharu | 64 |
7 | PETROV Daniel Bogomilov | 66 |
9 | VREČER Robert | 68 |
10 | ĐURASEK Kristijan | 56 |
11 | JOVANOVIĆ Nebojša | 60 |
17 | STEVIĆ Ivan | 66 |
18 | MIYAZAWA Takashi | 61 |
19 | MARIN Matej | 67 |
24 | TZORTZAKIS Polychronis | 80 |
27 | BOUGLAS Georgios | 71 |
45 | GERGANOV Evgeni | 60 |
46 | MUGERLI Matej | 68 |
50 | LOVASSY Krisztián | 71 |
59 | TYBOR Patrik | 72 |
63 | NAGY Robert | 52 |
66 | ROGINA Radoslav | 70 |
67 | SZEGHALMI Balint | 66 |
71 | MASUDA Nariyuki | 63 |