Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Kaczmarek
1
66 kgBanaszek
2
75 kgFortin
3
78 kgBogusławski
4
77 kgTeugels
5
64 kgStosz
6
70 kgKepplinger
7
70 kgPawlak
8
81 kgRudyk
9
76 kgBanaszek
11
75 kgPongiluppi
12
80 kgMarchand
13
61 kgAuer
14
73 kgFinkšt
15
70 kgCieślik
16
65 kgDi Felice
17
70 kgMurias
18
65 kgRekita
20
70 kg
1
66 kgBanaszek
2
75 kgFortin
3
78 kgBogusławski
4
77 kgTeugels
5
64 kgStosz
6
70 kgKepplinger
7
70 kgPawlak
8
81 kgRudyk
9
76 kgBanaszek
11
75 kgPongiluppi
12
80 kgMarchand
13
61 kgAuer
14
73 kgFinkšt
15
70 kgCieślik
16
65 kgDi Felice
17
70 kgMurias
18
65 kgRekita
20
70 kg
Weight (KG) →
Result →
81
61
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | KACZMAREK Jakub | 66 |
2 | BANASZEK Alan | 75 |
3 | FORTIN Filippo | 78 |
4 | BOGUSŁAWSKI Marceli | 77 |
5 | TEUGELS Lennert | 64 |
6 | STOSZ Patryk | 70 |
7 | KEPPLINGER Rainer | 70 |
8 | PAWLAK Tobiasz | 81 |
9 | RUDYK Bartosz | 76 |
11 | BANASZEK Norbert | 75 |
12 | PONGILUPPI Matteo | 80 |
13 | MARCHAND Gianni | 61 |
14 | AUER Daniel | 73 |
15 | FINKŠT Tilen | 70 |
16 | CIEŚLIK Paweł | 65 |
17 | DI FELICE Francesco | 70 |
18 | MURIAS Jakub | 65 |
20 | REKITA Szymon | 70 |