Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 51
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Crawford
1
59 kgGarcía
2
68 kgWhitehouse
4
58 kgPrades
5
56 kgFelipe
6
58 kgKangangi
9
64 kgManulang
11
59 kgChoe
17
63 kgNovardianto
18
69 kgWang
19
70 kgAso
22
67 kgWijaya
28
58 kgCahyadi
29
52 kgGoh
30
54 kgCuley
34
69 kgJung
40
62 kgNieto
42
58 kgHibatulah
44
55 kgIrawan
46
51 kgSulzberger
49
65 kgPriya Prasetya
66
62 kg
1
59 kgGarcía
2
68 kgWhitehouse
4
58 kgPrades
5
56 kgFelipe
6
58 kgKangangi
9
64 kgManulang
11
59 kgChoe
17
63 kgNovardianto
18
69 kgWang
19
70 kgAso
22
67 kgWijaya
28
58 kgCahyadi
29
52 kgGoh
30
54 kgCuley
34
69 kgJung
40
62 kgNieto
42
58 kgHibatulah
44
55 kgIrawan
46
51 kgSulzberger
49
65 kgPriya Prasetya
66
62 kg
Weight (KG) →
Result →
70
51
1
66
# | Rider | Weight (KG) |
---|---|---|
1 | CRAWFORD Jai | 59 |
2 | GARCÍA Ricardo | 68 |
4 | WHITEHOUSE Daniel | 58 |
5 | PRADES Benjamín | 56 |
6 | FELIPE Marcelo | 58 |
9 | KANGANGI Suleiman | 64 |
11 | MANULANG Robin | 59 |
17 | CHOE Hyeong Min | 63 |
18 | NOVARDIANTO Jamalidin | 69 |
19 | WANG Meiyin | 70 |
22 | ASO Keisuke | 67 |
28 | WIJAYA Endra | 58 |
29 | CAHYADI Aiman | 52 |
30 | GOH Choon Huat | 54 |
34 | CULEY Marcus | 69 |
40 | JUNG Woo-Ho | 62 |
42 | NIETO Edgar | 58 |
44 | HIBATULAH Jamal | 55 |
46 | IRAWAN Jefri | 51 |
49 | SULZBERGER Wesley | 65 |
66 | PRIYA PRASETYA Heksa | 62 |