Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 94
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Novardianto
4
69 kgPrades
9
56 kgPriya Prasetya
17
62 kgJung
18
62 kgFelipe
20
58 kgGarcía
23
68 kgCuley
25
69 kgKangangi
29
64 kgWijaya
32
58 kgManulang
33
59 kgAso
36
67 kgCahyadi
37
52 kgIrawan
47
51 kgWhitehouse
48
58 kgNakai
51
62 kgNieto
53
58 kgWang
57
70 kgCrawford
58
59 kgChoe
63
63 kgGoh
64
54 kgSulzberger
76
65 kgHibatulah
82
55 kg
4
69 kgPrades
9
56 kgPriya Prasetya
17
62 kgJung
18
62 kgFelipe
20
58 kgGarcía
23
68 kgCuley
25
69 kgKangangi
29
64 kgWijaya
32
58 kgManulang
33
59 kgAso
36
67 kgCahyadi
37
52 kgIrawan
47
51 kgWhitehouse
48
58 kgNakai
51
62 kgNieto
53
58 kgWang
57
70 kgCrawford
58
59 kgChoe
63
63 kgGoh
64
54 kgSulzberger
76
65 kgHibatulah
82
55 kg
Weight (KG) →
Result →
70
51
4
82
# | Rider | Weight (KG) |
---|---|---|
4 | NOVARDIANTO Jamalidin | 69 |
9 | PRADES Benjamín | 56 |
17 | PRIYA PRASETYA Heksa | 62 |
18 | JUNG Woo-Ho | 62 |
20 | FELIPE Marcelo | 58 |
23 | GARCÍA Ricardo | 68 |
25 | CULEY Marcus | 69 |
29 | KANGANGI Suleiman | 64 |
32 | WIJAYA Endra | 58 |
33 | MANULANG Robin | 59 |
36 | ASO Keisuke | 67 |
37 | CAHYADI Aiman | 52 |
47 | IRAWAN Jefri | 51 |
48 | WHITEHOUSE Daniel | 58 |
51 | NAKAI Tadaaki | 62 |
53 | NIETO Edgar | 58 |
57 | WANG Meiyin | 70 |
58 | CRAWFORD Jai | 59 |
63 | CHOE Hyeong Min | 63 |
64 | GOH Choon Huat | 54 |
76 | SULZBERGER Wesley | 65 |
82 | HIBATULAH Jamal | 55 |