Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 65
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Prades
1
56 kgFelipe
2
58 kgGarcía
3
68 kgCrawford
5
59 kgKangangi
7
64 kgWhitehouse
8
58 kgCahyadi
11
52 kgCuley
13
69 kgChoe
14
63 kgNovardianto
17
69 kgAso
31
67 kgWang
33
70 kgManulang
35
59 kgHibatulah
40
55 kgWijaya
43
58 kgJung
45
62 kgGoh
46
54 kgIrawan
52
51 kgSulzberger
60
65 kgNakai
63
62 kgPriya Prasetya
67
62 kgNieto
82
58 kg
1
56 kgFelipe
2
58 kgGarcía
3
68 kgCrawford
5
59 kgKangangi
7
64 kgWhitehouse
8
58 kgCahyadi
11
52 kgCuley
13
69 kgChoe
14
63 kgNovardianto
17
69 kgAso
31
67 kgWang
33
70 kgManulang
35
59 kgHibatulah
40
55 kgWijaya
43
58 kgJung
45
62 kgGoh
46
54 kgIrawan
52
51 kgSulzberger
60
65 kgNakai
63
62 kgPriya Prasetya
67
62 kgNieto
82
58 kg
Weight (KG) →
Result →
70
51
1
82
# | Rider | Weight (KG) |
---|---|---|
1 | PRADES Benjamín | 56 |
2 | FELIPE Marcelo | 58 |
3 | GARCÍA Ricardo | 68 |
5 | CRAWFORD Jai | 59 |
7 | KANGANGI Suleiman | 64 |
8 | WHITEHOUSE Daniel | 58 |
11 | CAHYADI Aiman | 52 |
13 | CULEY Marcus | 69 |
14 | CHOE Hyeong Min | 63 |
17 | NOVARDIANTO Jamalidin | 69 |
31 | ASO Keisuke | 67 |
33 | WANG Meiyin | 70 |
35 | MANULANG Robin | 59 |
40 | HIBATULAH Jamal | 55 |
43 | WIJAYA Endra | 58 |
45 | JUNG Woo-Ho | 62 |
46 | GOH Choon Huat | 54 |
52 | IRAWAN Jefri | 51 |
60 | SULZBERGER Wesley | 65 |
63 | NAKAI Tadaaki | 62 |
67 | PRIYA PRASETYA Heksa | 62 |
82 | NIETO Edgar | 58 |