Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 33
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Novardianto
5
69 kgNieto
7
58 kgGoh
11
54 kgCahyadi
12
52 kgGarcía
26
68 kgSulzberger
27
65 kgFelipe
34
58 kgKangangi
36
64 kgHibatulah
44
55 kgCrawford
46
59 kgPriya Prasetya
48
62 kgNakai
49
62 kgJung
51
62 kgWijaya
52
58 kgAso
55
67 kgManulang
58
59 kgWhitehouse
61
58 kgCuley
62
69 kgChoe
63
63 kgPrades
67
56 kgWang
77
70 kgIrawan
79
51 kg
5
69 kgNieto
7
58 kgGoh
11
54 kgCahyadi
12
52 kgGarcía
26
68 kgSulzberger
27
65 kgFelipe
34
58 kgKangangi
36
64 kgHibatulah
44
55 kgCrawford
46
59 kgPriya Prasetya
48
62 kgNakai
49
62 kgJung
51
62 kgWijaya
52
58 kgAso
55
67 kgManulang
58
59 kgWhitehouse
61
58 kgCuley
62
69 kgChoe
63
63 kgPrades
67
56 kgWang
77
70 kgIrawan
79
51 kg
Weight (KG) →
Result →
70
51
5
79
# | Rider | Weight (KG) |
---|---|---|
5 | NOVARDIANTO Jamalidin | 69 |
7 | NIETO Edgar | 58 |
11 | GOH Choon Huat | 54 |
12 | CAHYADI Aiman | 52 |
26 | GARCÍA Ricardo | 68 |
27 | SULZBERGER Wesley | 65 |
34 | FELIPE Marcelo | 58 |
36 | KANGANGI Suleiman | 64 |
44 | HIBATULAH Jamal | 55 |
46 | CRAWFORD Jai | 59 |
48 | PRIYA PRASETYA Heksa | 62 |
49 | NAKAI Tadaaki | 62 |
51 | JUNG Woo-Ho | 62 |
52 | WIJAYA Endra | 58 |
55 | ASO Keisuke | 67 |
58 | MANULANG Robin | 59 |
61 | WHITEHOUSE Daniel | 58 |
62 | CULEY Marcus | 69 |
63 | CHOE Hyeong Min | 63 |
67 | PRADES Benjamín | 56 |
77 | WANG Meiyin | 70 |
79 | IRAWAN Jefri | 51 |