Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 60
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Crawford
1
59 kgPrades
4
56 kgGarcía
5
68 kgWhitehouse
7
58 kgFelipe
8
58 kgManulang
9
59 kgKangangi
14
64 kgChoe
18
63 kgSulzberger
19
65 kgWang
22
70 kgNovardianto
23
69 kgHibatulah
25
55 kgAso
27
67 kgWijaya
29
58 kgNieto
30
58 kgGoh
38
54 kgCuley
42
69 kgCahyadi
44
52 kgJung
46
62 kgIrawan
58
51 kgPriya Prasetya
69
62 kg
1
59 kgPrades
4
56 kgGarcía
5
68 kgWhitehouse
7
58 kgFelipe
8
58 kgManulang
9
59 kgKangangi
14
64 kgChoe
18
63 kgSulzberger
19
65 kgWang
22
70 kgNovardianto
23
69 kgHibatulah
25
55 kgAso
27
67 kgWijaya
29
58 kgNieto
30
58 kgGoh
38
54 kgCuley
42
69 kgCahyadi
44
52 kgJung
46
62 kgIrawan
58
51 kgPriya Prasetya
69
62 kg
Weight (KG) →
Result →
70
51
1
69
# | Rider | Weight (KG) |
---|---|---|
1 | CRAWFORD Jai | 59 |
4 | PRADES Benjamín | 56 |
5 | GARCÍA Ricardo | 68 |
7 | WHITEHOUSE Daniel | 58 |
8 | FELIPE Marcelo | 58 |
9 | MANULANG Robin | 59 |
14 | KANGANGI Suleiman | 64 |
18 | CHOE Hyeong Min | 63 |
19 | SULZBERGER Wesley | 65 |
22 | WANG Meiyin | 70 |
23 | NOVARDIANTO Jamalidin | 69 |
25 | HIBATULAH Jamal | 55 |
27 | ASO Keisuke | 67 |
29 | WIJAYA Endra | 58 |
30 | NIETO Edgar | 58 |
38 | GOH Choon Huat | 54 |
42 | CULEY Marcus | 69 |
44 | CAHYADI Aiman | 52 |
46 | JUNG Woo-Ho | 62 |
58 | IRAWAN Jefri | 51 |
69 | PRIYA PRASETYA Heksa | 62 |