Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
De Gendt
1
73 kgNeyens
4
74 kgJanorschke
5
78 kgReimer
6
69 kgMartin
7
75 kgDenifl
8
65 kgLequatre
9
64 kgGerdemann
10
71 kgIrizar
11
73 kgHesselbarth
12
65 kgWegmann
13
60 kgCiolek
14
75 kgMonfort
15
66 kgGeschke
16
64 kgBurghardt
17
75 kgLemoine
18
73 kgBaumann
19
72 kg
1
73 kgNeyens
4
74 kgJanorschke
5
78 kgReimer
6
69 kgMartin
7
75 kgDenifl
8
65 kgLequatre
9
64 kgGerdemann
10
71 kgIrizar
11
73 kgHesselbarth
12
65 kgWegmann
13
60 kgCiolek
14
75 kgMonfort
15
66 kgGeschke
16
64 kgBurghardt
17
75 kgLemoine
18
73 kgBaumann
19
72 kg
Weight (KG) →
Result →
78
60
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | DE GENDT Thomas | 73 |
4 | NEYENS Maarten | 74 |
5 | JANORSCHKE Grischa | 78 |
6 | REIMER Martin | 69 |
7 | MARTIN Tony | 75 |
8 | DENIFL Stefan | 65 |
9 | LEQUATRE Geoffroy | 64 |
10 | GERDEMANN Linus | 71 |
11 | IRIZAR Markel | 73 |
12 | HESSELBARTH David | 65 |
13 | WEGMANN Fabian | 60 |
14 | CIOLEK Gerald | 75 |
15 | MONFORT Maxime | 66 |
16 | GESCHKE Simon | 64 |
17 | BURGHARDT Marcus | 75 |
18 | LEMOINE Cyril | 73 |
19 | BAUMANN Eric | 72 |