Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Denifl
1
65 kgPeterson
2
70 kgGeschke
3
64 kgDe Gendt
4
73 kgMørkøv
5
71 kgSchoffmann
8
67 kgGottfried
9
60 kgHesselbarth
12
65 kgMartin
13
75 kgGretsch
14
69 kgVelits
15
63 kgNeyens
16
74 kgVandewalle
17
74 kgBellis
18
69 kgKlemme
19
72 kgReimer
21
69 kgVanspeybrouck
22
76 kgJanorschke
23
78 kgde Lis
24
71 kgFröhlinger
28
62 kgCiolek
31
75 kgAramendia
34
72 kgSteensen
38
65 kg
1
65 kgPeterson
2
70 kgGeschke
3
64 kgDe Gendt
4
73 kgMørkøv
5
71 kgSchoffmann
8
67 kgGottfried
9
60 kgHesselbarth
12
65 kgMartin
13
75 kgGretsch
14
69 kgVelits
15
63 kgNeyens
16
74 kgVandewalle
17
74 kgBellis
18
69 kgKlemme
19
72 kgReimer
21
69 kgVanspeybrouck
22
76 kgJanorschke
23
78 kgde Lis
24
71 kgFröhlinger
28
62 kgCiolek
31
75 kgAramendia
34
72 kgSteensen
38
65 kg
Weight (KG) →
Result →
78
60
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | DENIFL Stefan | 65 |
2 | PETERSON Tom | 70 |
3 | GESCHKE Simon | 64 |
4 | DE GENDT Thomas | 73 |
5 | MØRKØV Michael | 71 |
8 | SCHOFFMANN Martin | 67 |
9 | GOTTFRIED Alexander | 60 |
12 | HESSELBARTH David | 65 |
13 | MARTIN Tony | 75 |
14 | GRETSCH Patrick | 69 |
15 | VELITS Peter | 63 |
16 | NEYENS Maarten | 74 |
17 | VANDEWALLE Kristof | 74 |
18 | BELLIS Jonathan | 69 |
19 | KLEMME Dominic | 72 |
21 | REIMER Martin | 69 |
22 | VANSPEYBROUCK Pieter | 76 |
23 | JANORSCHKE Grischa | 78 |
24 | DE LIS Sergio | 71 |
28 | FRÖHLINGER Johannes | 62 |
31 | CIOLEK Gerald | 75 |
34 | ARAMENDIA Javier | 72 |
38 | STEENSEN André | 65 |