Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 57
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Ciolek
1
75 kgBommel
2
75 kgJanorschke
3
78 kgMalori
4
68 kgSwift
5
69 kgImpey
6
72 kgRasmussen
7
88 kgKadri
8
66 kgCousin
9
74 kgCimolai
10
70 kgDémare
11
76 kgThomas
12
71 kgRiblon
13
65 kgGeschke
14
64 kgHaussler
15
74 kgLobato
16
64 kgBouet
17
67 kgUlissi
18
63 kgArndt
19
77.5 kgPérez
20
65 kgWyss
22
63 kgBardet
23
65 kgReimer
24
69 kgMegías
25
63 kg
1
75 kgBommel
2
75 kgJanorschke
3
78 kgMalori
4
68 kgSwift
5
69 kgImpey
6
72 kgRasmussen
7
88 kgKadri
8
66 kgCousin
9
74 kgCimolai
10
70 kgDémare
11
76 kgThomas
12
71 kgRiblon
13
65 kgGeschke
14
64 kgHaussler
15
74 kgLobato
16
64 kgBouet
17
67 kgUlissi
18
63 kgArndt
19
77.5 kgPérez
20
65 kgWyss
22
63 kgBardet
23
65 kgReimer
24
69 kgMegías
25
63 kg
Weight (KG) →
Result →
88
63
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | CIOLEK Gerald | 75 |
2 | BOMMEL Henning | 75 |
3 | JANORSCHKE Grischa | 78 |
4 | MALORI Adriano | 68 |
5 | SWIFT Ben | 69 |
6 | IMPEY Daryl | 72 |
7 | RASMUSSEN Alex | 88 |
8 | KADRI Blel | 66 |
9 | COUSIN Jérôme | 74 |
10 | CIMOLAI Davide | 70 |
11 | DÉMARE Arnaud | 76 |
12 | THOMAS Geraint | 71 |
13 | RIBLON Christophe | 65 |
14 | GESCHKE Simon | 64 |
15 | HAUSSLER Heinrich | 74 |
16 | LOBATO Juan José | 64 |
17 | BOUET Maxime | 67 |
18 | ULISSI Diego | 63 |
19 | ARNDT Nikias | 77.5 |
20 | PÉREZ Rubén | 65 |
22 | WYSS Marcel | 63 |
23 | BARDET Romain | 65 |
24 | REIMER Martin | 69 |
25 | MEGÍAS Javier | 63 |