Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 56
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Ciolek
1
75 kgBommel
2
75 kgJanorschke
3
78 kgMalori
4
68 kgSwift
5
69 kgImpey
6
72 kgRasmussen
7
88 kgKadri
8
66 kgCimolai
9
70 kgCousin
10
74 kgDémare
11
76 kgThomas
12
71 kgGeschke
13
64 kgRiblon
14
65 kgHaussler
15
74 kgUlissi
17
63 kgBouet
18
67 kgArndt
19
77.5 kgPérez
20
65 kgWyss
22
63 kgBardet
23
65 kgReimer
24
69 kgMegías
25
63 kg
1
75 kgBommel
2
75 kgJanorschke
3
78 kgMalori
4
68 kgSwift
5
69 kgImpey
6
72 kgRasmussen
7
88 kgKadri
8
66 kgCimolai
9
70 kgCousin
10
74 kgDémare
11
76 kgThomas
12
71 kgGeschke
13
64 kgRiblon
14
65 kgHaussler
15
74 kgUlissi
17
63 kgBouet
18
67 kgArndt
19
77.5 kgPérez
20
65 kgWyss
22
63 kgBardet
23
65 kgReimer
24
69 kgMegías
25
63 kg
Weight (KG) →
Result →
88
63
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | CIOLEK Gerald | 75 |
2 | BOMMEL Henning | 75 |
3 | JANORSCHKE Grischa | 78 |
4 | MALORI Adriano | 68 |
5 | SWIFT Ben | 69 |
6 | IMPEY Daryl | 72 |
7 | RASMUSSEN Alex | 88 |
8 | KADRI Blel | 66 |
9 | CIMOLAI Davide | 70 |
10 | COUSIN Jérôme | 74 |
11 | DÉMARE Arnaud | 76 |
12 | THOMAS Geraint | 71 |
13 | GESCHKE Simon | 64 |
14 | RIBLON Christophe | 65 |
15 | HAUSSLER Heinrich | 74 |
17 | ULISSI Diego | 63 |
18 | BOUET Maxime | 67 |
19 | ARNDT Nikias | 77.5 |
20 | PÉREZ Rubén | 65 |
22 | WYSS Marcel | 63 |
23 | BARDET Romain | 65 |
24 | REIMER Martin | 69 |
25 | MEGÍAS Javier | 63 |