Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 50
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Vos
1
58 kgFournier
2
60 kgEdmondson
3
66 kgBarker
4
56 kgWood
5
59 kgGonzález
6
51 kgEnsing
7
62 kgKessler
10
60 kgTrevisi
11
54 kgAndersen
12
55 kgPaladin
14
59 kgTenniglo
15
64 kgde Baat
16
56 kgFahlin
17
63 kgRagazinskiene
18
58 kgTeruel
19
56 kgHannes
23
51 kgPersico
25
53 kgDemey
26
56 kg
1
58 kgFournier
2
60 kgEdmondson
3
66 kgBarker
4
56 kgWood
5
59 kgGonzález
6
51 kgEnsing
7
62 kgKessler
10
60 kgTrevisi
11
54 kgAndersen
12
55 kgPaladin
14
59 kgTenniglo
15
64 kgde Baat
16
56 kgFahlin
17
63 kgRagazinskiene
18
58 kgTeruel
19
56 kgHannes
23
51 kgPersico
25
53 kgDemey
26
56 kg
Weight (KG) →
Result →
66
51
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | VOS Marianne | 58 |
2 | FOURNIER Roxane | 60 |
3 | EDMONDSON Annette | 66 |
4 | BARKER Elinor | 56 |
5 | WOOD Alice | 59 |
6 | GONZÁLEZ Alicia | 51 |
7 | ENSING Janneke | 62 |
10 | KESSLER Nina | 60 |
11 | TREVISI Anna | 54 |
12 | ANDERSEN Susanne | 55 |
14 | PALADIN Soraya | 59 |
15 | TENNIGLO Moniek | 64 |
16 | DE BAAT Kim | 56 |
17 | FAHLIN Emilia | 63 |
18 | RAGAZINSKIENE Daiva | 58 |
19 | TERUEL Alba | 56 |
23 | HANNES Kaat | 51 |
25 | PERSICO Silvia | 53 |
26 | DEMEY Valerie | 56 |