Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 85
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
van Dijk
2
71 kgVigié
4
58 kgConsonni
11
59 kgCopponi
14
55 kgDe Wilde
15
62 kgBarbieri
18
55 kgMagner
25
57 kgGuarischi
26
57 kgKuijpers
27
73 kgStern
28
55 kgTacey
29
62 kgvan der Hulst
33
66 kgBeuling
46
65 kgFidanza
48
60 kgTeutenberg
55
53 kgVitillo
64
51 kgBolks
68
60 kgGreenwood
85
60 kgMartins
86
61 kgAchtereekte
88
60 kg
2
71 kgVigié
4
58 kgConsonni
11
59 kgCopponi
14
55 kgDe Wilde
15
62 kgBarbieri
18
55 kgMagner
25
57 kgGuarischi
26
57 kgKuijpers
27
73 kgStern
28
55 kgTacey
29
62 kgvan der Hulst
33
66 kgBeuling
46
65 kgFidanza
48
60 kgTeutenberg
55
53 kgVitillo
64
51 kgBolks
68
60 kgGreenwood
85
60 kgMartins
86
61 kgAchtereekte
88
60 kg
Weight (KG) →
Result →
73
51
2
88
# | Rider | Weight (KG) |
---|---|---|
2 | VAN DIJK Ellen | 71 |
4 | VIGIÉ Margaux | 58 |
11 | CONSONNI Chiara | 59 |
14 | COPPONI Clara | 55 |
15 | DE WILDE Julie | 62 |
18 | BARBIERI Rachele | 55 |
25 | MAGNER Alexis | 57 |
26 | GUARISCHI Barbara | 57 |
27 | KUIJPERS Evy | 73 |
28 | STERN Léa | 55 |
29 | TACEY April | 62 |
33 | VAN DER HULST Amber | 66 |
46 | BEULING Femke | 65 |
48 | FIDANZA Martina | 60 |
55 | TEUTENBERG Lea Lin | 53 |
64 | VITILLO Matilde | 51 |
68 | BOLKS Florien | 60 |
85 | GREENWOOD Monica | 60 |
86 | MARTINS Maria | 61 |
88 | ACHTEREEKTE Carlijn | 60 |