Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Fidanza
1
60 kgGuarischi
2
57 kgConsonni
3
59 kgCopponi
4
55 kgBarbieri
5
55 kgDe Wilde
6
62 kgTacey
11
62 kgBolks
12
60 kgBeuling
17
65 kgVitillo
25
51 kgStern
31
55 kgVigié
35
58 kgvan Dijk
40
71 kgKuijpers
48
73 kgvan der Hulst
60
66 kgTeutenberg
75
53 kgGreenwood
79
60 kgMartins
82
61 kgAchtereekte
89
60 kgMagner
93
57 kg
1
60 kgGuarischi
2
57 kgConsonni
3
59 kgCopponi
4
55 kgBarbieri
5
55 kgDe Wilde
6
62 kgTacey
11
62 kgBolks
12
60 kgBeuling
17
65 kgVitillo
25
51 kgStern
31
55 kgVigié
35
58 kgvan Dijk
40
71 kgKuijpers
48
73 kgvan der Hulst
60
66 kgTeutenberg
75
53 kgGreenwood
79
60 kgMartins
82
61 kgAchtereekte
89
60 kgMagner
93
57 kg
Weight (KG) →
Result →
73
51
1
93
# | Rider | Weight (KG) |
---|---|---|
1 | FIDANZA Martina | 60 |
2 | GUARISCHI Barbara | 57 |
3 | CONSONNI Chiara | 59 |
4 | COPPONI Clara | 55 |
5 | BARBIERI Rachele | 55 |
6 | DE WILDE Julie | 62 |
11 | TACEY April | 62 |
12 | BOLKS Florien | 60 |
17 | BEULING Femke | 65 |
25 | VITILLO Matilde | 51 |
31 | STERN Léa | 55 |
35 | VIGIÉ Margaux | 58 |
40 | VAN DIJK Ellen | 71 |
48 | KUIJPERS Evy | 73 |
60 | VAN DER HULST Amber | 66 |
75 | TEUTENBERG Lea Lin | 53 |
79 | GREENWOOD Monica | 60 |
82 | MARTINS Maria | 61 |
89 | ACHTEREEKTE Carlijn | 60 |
93 | MAGNER Alexis | 57 |