Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Démare
3
76 kgChevrier
9
56 kgDe Pauw
15
72 kgVan Hoecke
17
78 kgGuillemois
26
66 kgMorice
27
81 kgChetout
29
70 kgHník
36
57 kgTeuns
44
64 kgCoquard
57
59 kgMaurelet
58
56 kgBreyne
62
83 kgDaniel
67
74 kgPaillot
71
72 kgTheuns
79
72 kgDuchesne
89
75 kgBarbier
99
79 kgCalmejane
105
70 kgWellens
133
71 kg
3
76 kgChevrier
9
56 kgDe Pauw
15
72 kgVan Hoecke
17
78 kgGuillemois
26
66 kgMorice
27
81 kgChetout
29
70 kgHník
36
57 kgTeuns
44
64 kgCoquard
57
59 kgMaurelet
58
56 kgBreyne
62
83 kgDaniel
67
74 kgPaillot
71
72 kgTheuns
79
72 kgDuchesne
89
75 kgBarbier
99
79 kgCalmejane
105
70 kgWellens
133
71 kg
Weight (KG) →
Result →
83
56
3
133
# | Rider | Weight (KG) |
---|---|---|
3 | DÉMARE Arnaud | 76 |
9 | CHEVRIER Clément | 56 |
15 | DE PAUW Moreno | 72 |
17 | VAN HOECKE Gijs | 78 |
26 | GUILLEMOIS Romain | 66 |
27 | MORICE Julien | 81 |
29 | CHETOUT Loïc | 70 |
36 | HNÍK Karel | 57 |
44 | TEUNS Dylan | 64 |
57 | COQUARD Bryan | 59 |
58 | MAURELET Flavien | 56 |
62 | BREYNE Jonathan | 83 |
67 | DANIEL Maxime | 74 |
71 | PAILLOT Yoann | 72 |
79 | THEUNS Edward | 72 |
89 | DUCHESNE Antoine | 75 |
99 | BARBIER Rudy | 79 |
105 | CALMEJANE Lilian | 70 |
133 | WELLENS Tim | 71 |