Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 57
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Lecuisinier
1
65 kgCoquard
2
59 kgPacher
4
62 kgSavitskiy
13
72 kgThevenot
15
69 kgChevrier
25
56 kgRaeymaekers
26
68 kgDe Winter
35
83 kgCardis
37
72 kgKerf
38
71 kgYssaad
51
69 kgBarbier
64
79 kgGuillonnet
67
69 kgCalmejane
76
70 kgSénéchal
80
77 kgChetout
82
70 kgFoliforov
85
61 kg
1
65 kgCoquard
2
59 kgPacher
4
62 kgSavitskiy
13
72 kgThevenot
15
69 kgChevrier
25
56 kgRaeymaekers
26
68 kgDe Winter
35
83 kgCardis
37
72 kgKerf
38
71 kgYssaad
51
69 kgBarbier
64
79 kgGuillonnet
67
69 kgCalmejane
76
70 kgSénéchal
80
77 kgChetout
82
70 kgFoliforov
85
61 kg
Weight (KG) →
Result →
83
56
1
85
# | Rider | Weight (KG) |
---|---|---|
1 | LECUISINIER Pierre-Henri | 65 |
2 | COQUARD Bryan | 59 |
4 | PACHER Quentin | 62 |
13 | SAVITSKIY Ivan | 72 |
15 | THEVENOT Guillaume | 69 |
25 | CHEVRIER Clément | 56 |
26 | RAEYMAEKERS Mattias | 68 |
35 | DE WINTER Ludwig | 83 |
37 | CARDIS Romain | 72 |
38 | KERF Jerome | 71 |
51 | YSSAAD Yannis | 69 |
64 | BARBIER Rudy | 79 |
67 | GUILLONNET Adrien | 69 |
76 | CALMEJANE Lilian | 70 |
80 | SÉNÉCHAL Florian | 77 |
82 | CHETOUT Loïc | 70 |
85 | FOLIFOROV Alexander | 61 |