Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 22
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Eenkhoorn
1
72 kgTurgis
5
61 kgvan den Berg
17
72 kgVanhoucke
18
65 kgParra
19
55 kgBrunel
21
70 kgSivakov
22
70 kgJullien
23
72 kgBarbier
24
69 kgLambrecht
29
56 kgMortier
30
66 kgCastrique
31
81 kgDebeaumarché
41
75 kgHuys
42
61 kgHernández
44
69 kgOttevanger
48
74 kgDewulf
54
74 kgDavy
61
73 kgInkelaar
66
64 kgGressier
67
67 kgDe Plus
75
69 kgBouwmans
77
64 kgVerwilst
79
68 kg
1
72 kgTurgis
5
61 kgvan den Berg
17
72 kgVanhoucke
18
65 kgParra
19
55 kgBrunel
21
70 kgSivakov
22
70 kgJullien
23
72 kgBarbier
24
69 kgLambrecht
29
56 kgMortier
30
66 kgCastrique
31
81 kgDebeaumarché
41
75 kgHuys
42
61 kgHernández
44
69 kgOttevanger
48
74 kgDewulf
54
74 kgDavy
61
73 kgInkelaar
66
64 kgGressier
67
67 kgDe Plus
75
69 kgBouwmans
77
64 kgVerwilst
79
68 kg
Weight (KG) →
Result →
81
55
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | EENKHOORN Pascal | 72 |
5 | TURGIS Tanguy | 61 |
17 | VAN DEN BERG Lars | 72 |
18 | VANHOUCKE Harm | 65 |
19 | PARRA José Félix | 55 |
21 | BRUNEL Alexys | 70 |
22 | SIVAKOV Pavel | 70 |
23 | JULLIEN Anthony | 72 |
24 | BARBIER Pierre | 69 |
29 | LAMBRECHT Bjorg | 56 |
30 | MORTIER Julien | 66 |
31 | CASTRIQUE Jonas | 81 |
41 | DEBEAUMARCHÉ Nicolas | 75 |
42 | HUYS Laurens | 61 |
44 | HERNÁNDEZ Sergio | 69 |
48 | OTTEVANGER Bas | 74 |
54 | DEWULF Stan | 74 |
61 | DAVY Clément | 73 |
66 | INKELAAR Kevin | 64 |
67 | GRESSIER Maxime | 67 |
75 | DE PLUS Jasper | 69 |
77 | BOUWMANS Dylan | 64 |
79 | VERWILST Aaron | 68 |