Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 64
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Renders
2
63 kgCosme
4
61 kgPérez
6
65 kgIngels
7
70 kgSteurs
10
77 kgAntón
14
64 kgVelasco
17
65 kgPérez
27
66 kgdel Nero
42
73 kgKaisen
52
82 kgWynants
57
74 kgMartin
64
75 kgDehaes
68
73 kgPujol
70
58 kgUrtasun
74
69 kgBlackgrove
77
65 kgCornu
81
78 kgLeezer
82
76 kgde Wilde
102
74 kgMeersman
103
63 kgvan Leijen
104
73 kg
2
63 kgCosme
4
61 kgPérez
6
65 kgIngels
7
70 kgSteurs
10
77 kgAntón
14
64 kgVelasco
17
65 kgPérez
27
66 kgdel Nero
42
73 kgKaisen
52
82 kgWynants
57
74 kgMartin
64
75 kgDehaes
68
73 kgPujol
70
58 kgUrtasun
74
69 kgBlackgrove
77
65 kgCornu
81
78 kgLeezer
82
76 kgde Wilde
102
74 kgMeersman
103
63 kgvan Leijen
104
73 kg
Weight (KG) →
Result →
82
58
2
104
# | Rider | Weight (KG) |
---|---|---|
2 | RENDERS Sven | 63 |
4 | COSME Antonio | 61 |
6 | PÉREZ Rubén | 65 |
7 | INGELS Nick | 70 |
10 | STEURS Geert | 77 |
14 | ANTÓN Igor | 64 |
17 | VELASCO Iván | 65 |
27 | PÉREZ Alan | 66 |
42 | DEL NERO Jesús | 73 |
52 | KAISEN Olivier | 82 |
57 | WYNANTS Maarten | 74 |
64 | MARTIN Tony | 75 |
68 | DEHAES Kenny | 73 |
70 | PUJOL Óscar | 58 |
74 | URTASUN Pablo | 69 |
77 | BLACKGROVE Heath | 65 |
81 | CORNU Dominique | 78 |
82 | LEEZER Tom | 76 |
102 | DE WILDE Sjef | 74 |
103 | MEERSMAN Gianni | 63 |
104 | VAN LEIJEN Joost | 73 |