Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 81
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
van Leijen
3
73 kgPérez
4
65 kgdel Nero
9
73 kgLeezer
12
76 kgCosme
13
61 kgSteurs
17
77 kgRenders
19
63 kgde Wilde
21
74 kgMartin
22
75 kgWynants
27
74 kgUrtasun
28
69 kgVelasco
31
65 kgDehaes
32
73 kgAntón
36
64 kgIngels
58
70 kgBlackgrove
68
65 kgCornu
69
78 kgPujol
89
58 kgPérez
90
66 kgMeersman
94
63 kgKaisen
99
82 kg
3
73 kgPérez
4
65 kgdel Nero
9
73 kgLeezer
12
76 kgCosme
13
61 kgSteurs
17
77 kgRenders
19
63 kgde Wilde
21
74 kgMartin
22
75 kgWynants
27
74 kgUrtasun
28
69 kgVelasco
31
65 kgDehaes
32
73 kgAntón
36
64 kgIngels
58
70 kgBlackgrove
68
65 kgCornu
69
78 kgPujol
89
58 kgPérez
90
66 kgMeersman
94
63 kgKaisen
99
82 kg
Weight (KG) →
Result →
82
58
3
99
# | Rider | Weight (KG) |
---|---|---|
3 | VAN LEIJEN Joost | 73 |
4 | PÉREZ Rubén | 65 |
9 | DEL NERO Jesús | 73 |
12 | LEEZER Tom | 76 |
13 | COSME Antonio | 61 |
17 | STEURS Geert | 77 |
19 | RENDERS Sven | 63 |
21 | DE WILDE Sjef | 74 |
22 | MARTIN Tony | 75 |
27 | WYNANTS Maarten | 74 |
28 | URTASUN Pablo | 69 |
31 | VELASCO Iván | 65 |
32 | DEHAES Kenny | 73 |
36 | ANTÓN Igor | 64 |
58 | INGELS Nick | 70 |
68 | BLACKGROVE Heath | 65 |
69 | CORNU Dominique | 78 |
89 | PUJOL Óscar | 58 |
90 | PÉREZ Alan | 66 |
94 | MEERSMAN Gianni | 63 |
99 | KAISEN Olivier | 82 |