Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2 * weight - 86
This means that on average for every extra kilogram weight a rider loses 2 positions in the result.
Antón
7
64 kgPujol
15
58 kgMartin
21
75 kgPérez
23
65 kgRenders
25
63 kgBlackgrove
26
65 kgPérez
40
66 kgCornu
41
78 kgUrtasun
43
69 kgIngels
49
70 kgWynants
51
74 kgMeersman
52
63 kgVelasco
54
65 kgvan Leijen
55
73 kgLeezer
57
76 kgSteurs
70
77 kgCosme
75
61 kgKaisen
76
82 kgde Wilde
88
74 kgDehaes
92
73 kgdel Nero
100
73 kg
7
64 kgPujol
15
58 kgMartin
21
75 kgPérez
23
65 kgRenders
25
63 kgBlackgrove
26
65 kgPérez
40
66 kgCornu
41
78 kgUrtasun
43
69 kgIngels
49
70 kgWynants
51
74 kgMeersman
52
63 kgVelasco
54
65 kgvan Leijen
55
73 kgLeezer
57
76 kgSteurs
70
77 kgCosme
75
61 kgKaisen
76
82 kgde Wilde
88
74 kgDehaes
92
73 kgdel Nero
100
73 kg
Weight (KG) →
Result →
82
58
7
100
# | Rider | Weight (KG) |
---|---|---|
7 | ANTÓN Igor | 64 |
15 | PUJOL Óscar | 58 |
21 | MARTIN Tony | 75 |
23 | PÉREZ Rubén | 65 |
25 | RENDERS Sven | 63 |
26 | BLACKGROVE Heath | 65 |
40 | PÉREZ Alan | 66 |
41 | CORNU Dominique | 78 |
43 | URTASUN Pablo | 69 |
49 | INGELS Nick | 70 |
51 | WYNANTS Maarten | 74 |
52 | MEERSMAN Gianni | 63 |
54 | VELASCO Iván | 65 |
55 | VAN LEIJEN Joost | 73 |
57 | LEEZER Tom | 76 |
70 | STEURS Geert | 77 |
75 | COSME Antonio | 61 |
76 | KAISEN Olivier | 82 |
88 | DE WILDE Sjef | 74 |
92 | DEHAES Kenny | 73 |
100 | DEL NERO Jesús | 73 |