Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 35
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Finot
1
65 kgNaulleau
2
72 kgLjungblad
4
70 kgIglinskiy
5
67 kgGarcía Dapena
7
73 kgAuger
8
78 kgCoyot
9
76 kgOriol
10
65 kgHalgand
11
67 kgSoutham
12
69 kgBrard
13
74 kgAranaga
14
60 kgMourey
15
62 kgDerepas
17
69 kgBarbosa
21
72 kgMizurov
22
68 kgVerheyen
23
68 kgMengin
25
68 kgJoly
26
74 kgGabriel
27
60 kg
1
65 kgNaulleau
2
72 kgLjungblad
4
70 kgIglinskiy
5
67 kgGarcía Dapena
7
73 kgAuger
8
78 kgCoyot
9
76 kgOriol
10
65 kgHalgand
11
67 kgSoutham
12
69 kgBrard
13
74 kgAranaga
14
60 kgMourey
15
62 kgDerepas
17
69 kgBarbosa
21
72 kgMizurov
22
68 kgVerheyen
23
68 kgMengin
25
68 kgJoly
26
74 kgGabriel
27
60 kg
Weight (KG) →
Result →
78
60
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | FINOT Frédéric | 65 |
2 | NAULLEAU Alexandre | 72 |
4 | LJUNGBLAD Jonas | 70 |
5 | IGLINSKIY Maxim | 67 |
7 | GARCÍA DAPENA David | 73 |
8 | AUGER Ludovic | 78 |
9 | COYOT Arnaud | 76 |
10 | ORIOL Christophe | 65 |
11 | HALGAND Patrice | 67 |
12 | SOUTHAM Tom | 69 |
13 | BRARD Florent | 74 |
14 | ARANAGA Andoni | 60 |
15 | MOUREY Francis | 62 |
17 | DEREPAS David | 69 |
21 | BARBOSA Cândido | 72 |
22 | MIZUROV Andrey | 68 |
23 | VERHEYEN Geert | 68 |
25 | MENGIN Christophe | 68 |
26 | JOLY Sébastien | 74 |
27 | GABRIEL Frédéric | 60 |