Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 21
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Bonsergent
1
66 kgDrujon
4
75 kgVanthourenhout
5
65 kgMondory
7
66 kgDion
8
65 kgJérôme
11
65 kgPasseron
15
73 kgGadret
17
58 kgBuffaz
22
64 kgKuschynski
25
65 kgZonneveld
26
63 kgBarthe
29
65 kgHeijboer
30
78 kgDuret
31
62 kgNys
36
73 kgKairelis
37
63 kgEichler
46
78 kgKaisen
47
82 kgBlot
61
71 kgUsov
64
63 kgRiblon
65
65 kgVervecken
66
78 kgVerstraeten
68
65 kg
1
66 kgDrujon
4
75 kgVanthourenhout
5
65 kgMondory
7
66 kgDion
8
65 kgJérôme
11
65 kgPasseron
15
73 kgGadret
17
58 kgBuffaz
22
64 kgKuschynski
25
65 kgZonneveld
26
63 kgBarthe
29
65 kgHeijboer
30
78 kgDuret
31
62 kgNys
36
73 kgKairelis
37
63 kgEichler
46
78 kgKaisen
47
82 kgBlot
61
71 kgUsov
64
63 kgRiblon
65
65 kgVervecken
66
78 kgVerstraeten
68
65 kg
Weight (KG) →
Result →
82
58
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | BONSERGENT Stéphane | 66 |
4 | DRUJON Mathieu | 75 |
5 | VANTHOURENHOUT Sven | 65 |
7 | MONDORY Lloyd | 66 |
8 | DION Renaud | 65 |
11 | JÉRÔME Vincent | 65 |
15 | PASSERON Aurélien | 73 |
17 | GADRET John | 58 |
22 | BUFFAZ Mickaël | 64 |
25 | KUSCHYNSKI Aleksandr | 65 |
26 | ZONNEVELD Thijs | 63 |
29 | BARTHE Stéphane | 65 |
30 | HEIJBOER Mathieu | 78 |
31 | DURET Sébastien | 62 |
36 | NYS Sven | 73 |
37 | KAIRELIS Dainius | 63 |
46 | EICHLER Markus | 78 |
47 | KAISEN Olivier | 82 |
61 | BLOT Guillaume | 71 |
64 | USOV Alexandre | 63 |
65 | RIBLON Christophe | 65 |
66 | VERVECKEN Erwin | 78 |
68 | VERSTRAETEN Jan | 65 |