Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 7
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Tanner
1
70 kgBichot
2
67 kgFeillu
4
62 kgCasper
5
69 kgGarrido
7
70 kgGlasner
10
72 kgDuret
11
62 kgBonsergent
12
66 kgMalacarne
14
73 kgvan Emden
15
78 kgVogondy
16
62 kgSaramotins
17
75 kgRoberts
23
71 kgAlbert
24
73 kgRossetto
26
68 kgHelminen
27
74 kgFirsanov
30
58 kgVanmarcke
32
77 kg
1
70 kgBichot
2
67 kgFeillu
4
62 kgCasper
5
69 kgGarrido
7
70 kgGlasner
10
72 kgDuret
11
62 kgBonsergent
12
66 kgMalacarne
14
73 kgvan Emden
15
78 kgVogondy
16
62 kgSaramotins
17
75 kgRoberts
23
71 kgAlbert
24
73 kgRossetto
26
68 kgHelminen
27
74 kgFirsanov
30
58 kgVanmarcke
32
77 kg
Weight (KG) →
Result →
78
58
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | TANNER David | 70 |
2 | BICHOT Freddy | 67 |
4 | FEILLU Romain | 62 |
5 | CASPER Jimmy | 69 |
7 | GARRIDO Martin Gerardo | 70 |
10 | GLASNER Björn | 72 |
11 | DURET Sébastien | 62 |
12 | BONSERGENT Stéphane | 66 |
14 | MALACARNE Gael | 73 |
15 | VAN EMDEN Jos | 78 |
16 | VOGONDY Nicolas | 62 |
17 | SARAMOTINS Aleksejs | 75 |
23 | ROBERTS Luke | 71 |
24 | ALBERT Niels | 73 |
26 | ROSSETTO Stéphane | 68 |
27 | HELMINEN Matti | 74 |
30 | FIRSANOV Sergey | 58 |
32 | VANMARCKE Sep | 77 |