Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Guillemois
2
66 kgFournier
3
71 kgVeilleux
5
75 kgFonseca
6
56 kgVachon
7
65 kgFedi
8
70 kgCoquard
9
59 kgDuval
10
68 kgVermeersch
11
68 kgLecuisinier
12
65 kgMcNally
13
72 kgBoulo
15
62 kgAernouts
16
63 kgBagües
17
67 kgGérard
18
70 kgBouyer
20
65 kgVan Lerberghe
22
83 kgMaldonado
24
57 kgDufrasne
26
70 kgMeisen
30
62 kgAlafaci
33
77 kgPauwels
34
60 kg
2
66 kgFournier
3
71 kgVeilleux
5
75 kgFonseca
6
56 kgVachon
7
65 kgFedi
8
70 kgCoquard
9
59 kgDuval
10
68 kgVermeersch
11
68 kgLecuisinier
12
65 kgMcNally
13
72 kgBoulo
15
62 kgAernouts
16
63 kgBagües
17
67 kgGérard
18
70 kgBouyer
20
65 kgVan Lerberghe
22
83 kgMaldonado
24
57 kgDufrasne
26
70 kgMeisen
30
62 kgAlafaci
33
77 kgPauwels
34
60 kg
Weight (KG) →
Result →
83
56
2
34
# | Rider | Weight (KG) |
---|---|---|
2 | GUILLEMOIS Romain | 66 |
3 | FOURNIER Marc | 71 |
5 | VEILLEUX David | 75 |
6 | FONSECA Armindo | 56 |
7 | VACHON Florian | 65 |
8 | FEDI Andrea | 70 |
9 | COQUARD Bryan | 59 |
10 | DUVAL Julien | 68 |
11 | VERMEERSCH Gianni | 68 |
12 | LECUISINIER Pierre-Henri | 65 |
13 | MCNALLY Mark | 72 |
15 | BOULO Matthieu | 62 |
16 | AERNOUTS Jim | 63 |
17 | BAGÜES Aritz | 67 |
18 | GÉRARD Arnaud | 70 |
20 | BOUYER Franck | 65 |
22 | VAN LERBERGHE Bert | 83 |
24 | MALDONADO Anthony | 57 |
26 | DUFRASNE Jonathan | 70 |
30 | MEISEN Marcel | 62 |
33 | ALAFACI Eugenio | 77 |
34 | PAUWELS Kevin | 60 |