Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Fournier
1
71 kgFedi
2
70 kgTurgis
3
63 kgLecuisinier
4
65 kgPerez
5
70 kgMottier
6
65 kgLedanois
7
67 kgCoquard
8
59 kgvan der Haar
9
58 kgMaldonado
13
57 kgSepúlveda
16
59 kgIturria
17
69 kgPoitevin
19
63 kgVermeersch
22
68 kgGuillemois
25
66 kgCardis
26
72 kgVan Lerberghe
28
83 kgDe Bie
29
65 kgManfredi
32
54 kgSlik
33
71 kgLeveau
34
67 kgMaurelet
38
56 kg
1
71 kgFedi
2
70 kgTurgis
3
63 kgLecuisinier
4
65 kgPerez
5
70 kgMottier
6
65 kgLedanois
7
67 kgCoquard
8
59 kgvan der Haar
9
58 kgMaldonado
13
57 kgSepúlveda
16
59 kgIturria
17
69 kgPoitevin
19
63 kgVermeersch
22
68 kgGuillemois
25
66 kgCardis
26
72 kgVan Lerberghe
28
83 kgDe Bie
29
65 kgManfredi
32
54 kgSlik
33
71 kgLeveau
34
67 kgMaurelet
38
56 kg
Weight (KG) →
Result →
83
54
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | FOURNIER Marc | 71 |
2 | FEDI Andrea | 70 |
3 | TURGIS Jimmy | 63 |
4 | LECUISINIER Pierre-Henri | 65 |
5 | PEREZ Anthony | 70 |
6 | MOTTIER Justin | 65 |
7 | LEDANOIS Kévin | 67 |
8 | COQUARD Bryan | 59 |
9 | VAN DER HAAR Lars | 58 |
13 | MALDONADO Anthony | 57 |
16 | SEPÚLVEDA Eduardo | 59 |
17 | ITURRIA Mikel | 69 |
19 | POITEVIN Benoit | 63 |
22 | VERMEERSCH Gianni | 68 |
25 | GUILLEMOIS Romain | 66 |
26 | CARDIS Romain | 72 |
28 | VAN LERBERGHE Bert | 83 |
29 | DE BIE Sean | 65 |
32 | MANFREDI Andrea | 54 |
33 | SLIK Ivar | 71 |
34 | LEVEAU Jérémy | 67 |
38 | MAURELET Flavien | 56 |