Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 10
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Vaubourzeix
1
70 kgŠiškevičius
2
80 kgDelaplace
4
65 kgPetruš
5
58 kgAntonini
6
75 kgRagonessi
7
67 kgFonseca
8
56 kgSénéchal
9
77 kgBaldo
10
73 kgTurgot
11
73 kgTeunissen
12
73 kgSijmens
13
69 kgNauleau
14
67 kgVachon
16
65 kgEngoulvent
17
82 kgHonig
18
61 kgLe Bon
19
70 kg
1
70 kgŠiškevičius
2
80 kgDelaplace
4
65 kgPetruš
5
58 kgAntonini
6
75 kgRagonessi
7
67 kgFonseca
8
56 kgSénéchal
9
77 kgBaldo
10
73 kgTurgot
11
73 kgTeunissen
12
73 kgSijmens
13
69 kgNauleau
14
67 kgVachon
16
65 kgEngoulvent
17
82 kgHonig
18
61 kgLe Bon
19
70 kg
Weight (KG) →
Result →
82
56
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | VAUBOURZEIX Thomas | 70 |
2 | ŠIŠKEVIČIUS Evaldas | 80 |
4 | DELAPLACE Anthony | 65 |
5 | PETRUŠ Lubomir | 58 |
6 | ANTONINI Simone | 75 |
7 | RAGONESSI José | 67 |
8 | FONSECA Armindo | 56 |
9 | SÉNÉCHAL Florian | 77 |
10 | BALDO Nicolas | 73 |
11 | TURGOT Sébastien | 73 |
12 | TEUNISSEN Mike | 73 |
13 | SIJMENS Nico | 69 |
14 | NAULEAU Bryan | 67 |
16 | VACHON Florian | 65 |
17 | ENGOULVENT Jimmy | 82 |
18 | HONIG Reinier | 61 |
19 | LE BON Johan | 70 |